Exemplo n.º 1
0
    def make_graph(self, input):
        out = nd.Struct()
        out.make_struct('levels')

        with nd.Scope('encoder'):
            conv0            = nd.scope.conv_nl(input,   name="conv0",   kernel_size=3, stride=1, pad=1, num_output=self._encoder_channels['conv0'])
            conv1            = nd.scope.conv_nl(conv0,   name="conv1",   kernel_size=3, stride=2, pad=1, num_output=self._encoder_channels['conv1'])
            conv1_1          = nd.scope.conv_nl(conv1,   name="conv1_1", kernel_size=3, stride=1, pad=1, num_output=self._encoder_channels['conv1_1'])
            conv2            = nd.scope.conv_nl(conv1_1, name="conv2",   kernel_size=3, stride=2, pad=1, num_output=self._encoder_channels['conv2'])
            conv2_1          = nd.scope.conv_nl(conv2,   name="conv2_1", kernel_size=3, stride=1, pad=1, num_output=self._encoder_channels['conv2_1'])

            prediction2 = self.predict(conv2_1, level=2, loss_weight=self._loss_weights['level2'], out=out)

        with nd.Scope('decoder'):
            decoder1, prediction1 = \
                self.refine(level=1,
                            input=conv2_1,
                            input_prediction=prediction2,
                            features=conv1_1, out=out)

            if self._exit_after == 1:
                out.final = out.levels[1]
                return out

            decoder0, prediction0 = \
                self.refine(level=0,
                            input=decoder1,
                            input_prediction=prediction1,
                            features=conv0, out=out)

            out.final = out.levels[0]
            return out
Exemplo n.º 2
0
    def make_graph(self, img0, img1, edge_features=None, use_1D_corr=False, single_direction=0):
        with nd.Scope('features', learn=self._learn_features):
            feat = self._features.make_graph(img0, img1)

        with nd.Scope('upper'):
            out = self._upper.make_graph(feat, edge_features, use_1D_corr, single_direction)
            out.feat = feat
            return out
Exemplo n.º 3
0
    def make_graph(self, data, include_losses=True):
        pred_config = nd.PredConfig()
        pred_config.add(
            nd.PredConfigId(
                type='disp',
                perspective='L',
                channels=1,
                scale=self._scale,
            ))

        pred_dispL_t_1 = data.disp.L
        pred_flow_fwd = data.flow[0].fwd
        pred_occ_fwd = data.occ[0].fwd

        pred_dispL_t1_warped = nd.ops.warp(pred_dispL_t_1, pred_flow_fwd)

        pred_config[0].mod_func = lambda x: self.interpolator(
            pred=x, prev_disp=pred_dispL_t1_warped)
        inp = nd.ops.concat(data.img.L, nd.ops.scale(pred_dispL_t1_warped,
                                                     0.05), pred_occ_fwd)

        with nd.Scope('refine_disp', learn=True, **self.scope_args()):
            arch = Architecture_S(
                num_outputs=pred_config.total_channels(),
                disassembling_function=pred_config.disassemble,
                loss_function=None,
                conv_upsample=self._conv_upsample,
                exit_after=0)
            out = arch.make_graph(inp, edge_features=data.img.L)
        return out
Exemplo n.º 4
0
    def make_graph(self, data, include_losses=False):
        
        # hypNet
        pred_config = nd.PredConfig()
        pred_config.add(nd.PredConfigId(type='flow_hyp', dir='fwd', offset=0, channels=2, scale=self._scale, array_length=self._num_hypotheses))
        pred_config.add(nd.PredConfigId(type='iul_b_hyp_log', dir='fwd', offset=0, channels=2, scale=self._scale, array_length=self._num_hypotheses, mod_func=self._log_sigmoid))
            
        nd.log('pred_config:')
        nd.log(pred_config)

        with nd.Scope('hypNet', shared_batchnorm=False, correlation_leaky_relu=True, **self.scope_args()):
            arch = Architecture_C(
                num_outputs=pred_config.total_channels(),
                disassembling_function=pred_config.disassemble,
                conv_upsample=True,
                loss_function= None,
                channel_factor=self._channel_factor,
                feature_channels=self._feature_channels
            )

            out_hyp = arch.make_graph(data.img[0], data.img[1])
        
        # mergeNet
        pred_config = nd.PredConfig()
        pred_config.add(nd.PredConfigId(type='flow', dir='fwd', offset=0, channels=2, scale=self._scale, dist=1))
        pred_config.add(nd.PredConfigId(type='iul_b_log', dir='fwd', offset=0, channels=2, scale=self._scale, dist=1, mod_func=self.iul_b_log_sigmoid))
        nd.log('pred_config:')
        nd.log(pred_config)
        hyps = [nd.ops.resample(hyp, reference=data.img[0], antialias=False, type='LINEAR') for hyp in [out_hyp.final.flow_hyp[0].fwd[i] for i in range(self._num_hypotheses)]]
        uncertainties = [nd.ops.resample(unc, reference=data.img[0], antialias=False, type='LINEAR') for unc in [out_hyp.final.iul_b_hyp_log[0].fwd[i] for i in range(self._num_hypotheses)]]
        img_warped = [nd.ops.warp(data.img[1], hyp) for hyp in hyps]
        with nd.Scope('mergeNet', shared_batchnorm=False, **self.scope_args()):            
            input = nd.ops.concat([data.img[0]] + [data.img[1]] + hyps + uncertainties + img_warped)
            arch = Architecture_S(
                num_outputs=pred_config.total_channels(),
                disassembling_function=pred_config.disassemble,
                conv_upsample=True,
                loss_function= None,
                channel_factor=self._channel_factor
                )
            out_merge = arch.make_graph(input)
        
        return out_merge
Exemplo n.º 5
0
    def predict(self, input, level, loss_weight, out):
        with nd.Scope('predict'):
            predicted = nd.scope.conv(input, name='conv', kernel_size=3, stride=1, pad=1, num_output=self._num_outputs)

            out.levels.make_struct(level)
            if callable(self._disassembling_function):
                out.levels[level] = self._disassembling_function(predicted)

            if callable(self._loss_function):
                self._loss_function(out.levels[level], level=level, weight=loss_weight)

            return predicted
Exemplo n.º 6
0
    def refine(self, level, input, features, out, input_prediction=None):
        num_output = self._decoder_channels['level%d' % level]

        with nd.Scope('refine_%d' % level):
            upconv = nd.scope.upconv_nl(input, name='deconv', kernel_size=4, stride=2, pad=1, num_output=num_output)

            concat_list = [features, upconv]
            if input_prediction is not None:
                upsampled_prediction = self.upsample_prediction(input_prediction, upconv, name="upsample_prediction%dto%d" % (level+1, level))
                concat_list.append(upsampled_prediction)

            concatenated = nd.ops.concat(concat_list, axis=1)

            if self._interconv:
                concatenated = nd.scope.conv_nl(
                    concatenated,
                    name="interconv",
                    kernel_size=3, stride=1, pad=1,
                    num_output=num_output)

            refined_prediction = self.predict(concatenated, level=level, loss_weight=self._loss_weights['level%d' % level], out=out)

            return concatenated, refined_prediction
Exemplo n.º 7
0
    def make_graph(self, input, edge_features=None):
        out = nd.Struct()
        out.make_struct('levels')

        with nd.Scope('encoder'):
            conv1 = nd.scope.conv_nl(
                input,
                name="conv1",
                kernel_size=7,
                stride=2,
                pad=3,
                num_output=self._encoder_channels['conv1'])
            conv2 = nd.scope.conv_nl(
                conv1,
                name="conv2",
                kernel_size=5,
                stride=2,
                pad=2,
                num_output=self._encoder_channels['conv2'])
            conv3 = nd.scope.conv_nl(
                conv2,
                name="conv3",
                kernel_size=5,
                stride=2,
                pad=2,
                num_output=self._encoder_channels['conv3'])
            conv3_1 = nd.scope.conv_nl(
                conv3,
                name="conv3_1",
                kernel_size=3,
                stride=1,
                pad=1,
                num_output=self._encoder_channels['conv3_1'])
            conv4 = nd.scope.conv_nl(
                conv3_1,
                name="conv4",
                kernel_size=3,
                stride=2,
                pad=1,
                num_output=self._encoder_channels['conv4'])
            conv4_1 = nd.scope.conv_nl(
                conv4,
                name="conv4_1",
                kernel_size=3,
                stride=1,
                pad=1,
                num_output=self._encoder_channels['conv4_1'])
            if self._encoder_level == 4:
                prediction4 = self.predict(
                    conv4_1,
                    level=4,
                    loss_weight=self._loss_weights['level4'],
                    out=out)
            else:
                conv5 = nd.scope.conv_nl(
                    conv4_1,
                    name="conv5",
                    kernel_size=3,
                    stride=2,
                    pad=1,
                    num_output=self._encoder_channels['conv5'])
                conv5_1 = nd.scope.conv_nl(
                    conv5,
                    name="conv5_1",
                    kernel_size=3,
                    stride=1,
                    pad=1,
                    num_output=self._encoder_channels['conv5_1'])
                if self._encoder_level == 5:
                    prediction5 = self.predict(
                        conv5_1,
                        level=5,
                        loss_weight=self._loss_weights['level5'],
                        out=out)
                else:
                    conv6 = nd.scope.conv_nl(
                        conv5_1,
                        name="conv6",
                        kernel_size=3,
                        stride=2,
                        pad=1,
                        num_output=self._encoder_channels['conv6'])
                    conv6_1 = nd.scope.conv_nl(
                        conv6,
                        name="conv6_1",
                        kernel_size=3,
                        stride=1,
                        pad=1,
                        num_output=self._encoder_channels['conv6_1'])

                    prediction6 = self.predict(
                        conv6_1,
                        level=6,
                        loss_weight=self._loss_weights['level6'],
                        out=out)

        with nd.Scope('decoder'):

            if self._encoder_level >= 6:
                decoder5, prediction5 = \
                    self.refine(level=5,
                                input=conv6_1,
                                input_prediction=prediction6,
                                features=conv5_1, out=out)

                if self._exit_after == 5:
                    out.final = out.levels[5]
                    return out

            if self._encoder_level >= 5:
                decoder4, prediction4 = \
                    self.refine(level=4,
                                input=decoder5 if self._encoder_level > 5 else conv5_1,
                                input_prediction=prediction5,
                                features=conv4_1, out=out)

                if self._exit_after == 4:
                    out.final = out.levels[4]
                    return out

            decoder3, prediction3 = \
                self.refine(level=3,
                            input=decoder4 if self._encoder_level > 4 else conv4_1,
                            input_prediction=prediction4,
                            features=conv3_1, out=out)

            if self._exit_after == 3:
                out.final = out.levels[3]
                return out

            decoder2, prediction2 = \
                self.refine(level=2,
                            input=decoder3,
                            input_prediction=prediction3,
                            features=conv2, out=out)

            if self._exit_after == 2:
                out.final = out.levels[2]
                return out

            decoder1, prediction1 = \
                self.refine(level=1,
                            input=decoder2,
                            input_prediction=prediction2,
                            features=conv1, out=out)

            if self._exit_after == 1:
                out.final = out.levels[1]
                return out

            if edge_features is None:
                raise BaseException(
                    'Architecture_S needs edge features if now shallow')

            edges = nd.scope.conv_nl(
                edge_features,
                name="conv_edges",
                kernel_size=3,
                stride=1,
                pad=1,
                num_output=self._decoder_channels['level0'])

            decoder0, prediction0 = \
                self.refine(level=0,
                            input=decoder1,
                            input_prediction=prediction1,
                            features=edges, out=out)

            out.final = out.levels[0]
            return out
Exemplo n.º 8
0
    def make_graph(self, data, include_losses=True):

        pred_config = nd.PredConfig()

        pred_config.add(
            nd.PredConfigId(type='flow',
                            dir='fwd',
                            offset=0,
                            channels=2,
                            scale=self._scale))
        pred_config.add(
            nd.PredConfigId(type='occ',
                            dir='fwd',
                            offset=0,
                            channels=2,
                            scale=self._scale))

        nd.log('pred_config:')
        nd.log(pred_config)

        #### Net 1 ####
        with nd.Scope('net1', learn=False, **self.scope_args()):
            arch1 = Architecture_C(
                num_outputs=pred_config.total_channels(),
                disassembling_function=pred_config.disassemble,
                loss_function=None,
                conv_upsample=self._conv_upsample)

            out1 = arch1.make_graph(data.img[0], data.img[1])

        #### Net 2 ####
        flow_fwd = out1.final.flow[0].fwd
        upsampled_flow_fwd = nd.ops.differentiable_resample(
            flow_fwd, reference=data.img[0])
        warped = nd.ops.warp(data.img[1], upsampled_flow_fwd)

        # prepare data for second net
        occ_fwd = self.resample_occ(out1.final.occ[0].fwd, data.img[0])

        input2 = nd.ops.concat(data.img[0], data.img[1],
                               nd.ops.scale(upsampled_flow_fwd, 0.05), warped,
                               occ_fwd)

        pred_config[0].mod_func = lambda x: nd.ops.add(
            x,
            nd.ops.resample(
                flow_fwd, reference=x, type='LINEAR', antialias=False))
        pred_config[1].mod_func = lambda x: nd.ops.add(
            x,
            nd.ops.resample(
                occ_fwd, reference=x, type='LINEAR', antialias=False))

        with nd.Scope('net2', learn=False, **self.scope_args()):

            arch2 = Architecture_S(
                num_outputs=pred_config.total_channels(),
                disassembling_function=pred_config.disassemble,
                loss_function=None,
                conv_upsample=self._conv_upsample)
            out2 = arch2.make_graph(input2)

        #### Net 3 ####

        flow_fwd = out2.final.flow[0].fwd
        upsampled_flow_fwd = nd.ops.differentiable_resample(
            flow_fwd, reference=data.img[0])
        warped = nd.ops.warp(data.img[1], upsampled_flow_fwd)

        # prepare data for third net
        occ_fwd = self.resample_occ(out2.final.occ[0].fwd, data.img[0])

        input3 = nd.ops.concat(data.img[0], data.img[1],
                               nd.ops.scale(upsampled_flow_fwd, 0.05), warped,
                               occ_fwd)

        pred_config.add(
            nd.PredConfigId(type='mb',
                            dir='fwd',
                            offset=0,
                            channels=2,
                            scale=self._scale))

        pred_config[0].mod_func = lambda x: nd.ops.add(
            x,
            nd.ops.resample(
                flow_fwd, reference=x, type='LINEAR', antialias=False))
        pred_config[1].mod_func = lambda x: nd.ops.add(
            x,
            nd.ops.resample(
                occ_fwd, reference=x, type='LINEAR', antialias=False))

        with nd.Scope('net3', learn=True, **self.scope_args()):

            arch3 = Architecture_S(
                num_outputs=pred_config.total_channels(),
                disassembling_function=pred_config.disassemble,
                loss_function=None,
                conv_upsample=self._conv_upsample,
                exit_after=0,
            )
            out3 = arch3.make_graph(input3, edge_features=data.img[0])

        return out3
Exemplo n.º 9
0
    def make_graph(self, input, edge_features=None, use_1D_corr=False, single_direction=0):
        out = nd.Struct()
        out.make_struct('levels')
        if use_1D_corr:
            corr = nd.ops.correlation_1d(input.conv3a, input.conv3b,
                        kernel_size=1,
                        max_displacement=40,
                        pad=40,
                        stride_1=1,
                        stride_2=1,
                        single_direction=single_direction
                        )
        else:
            corr = nd.ops.correlation_2d(input.conv3a, input.conv3b,
                        kernel_size=1,
                        max_displacement=20,
                        pad=20,
                        stride_1=1,
                        stride_2=2)


        with nd.Scope('encoder'):

            redir = nd.scope.conv_nl(input.conv3a,  name="conv_redir", kernel_size=1, stride=1, pad=0, num_output=self._encoder_channels['conv_redir'])
            merged = nd.ops.concat(redir, corr)

            conv3_1          = nd.scope.conv_nl(merged,  name="conv3_1", kernel_size=3, stride=1, pad=1, num_output=self._encoder_channels['conv3_1'])
            conv4            = nd.scope.conv_nl(conv3_1, name="conv4",   kernel_size=3, stride=2, pad=1, num_output=self._encoder_channels['conv4'])
            conv4_1          = nd.scope.conv_nl(conv4,   name="conv4_1", kernel_size=3, stride=1, pad=1, num_output=self._encoder_channels['conv4_1'])
            conv5            = nd.scope.conv_nl(conv4_1, name="conv5",   kernel_size=3, stride=2, pad=1, num_output=self._encoder_channels['conv5'])
            conv5_1          = nd.scope.conv_nl(conv5,   name="conv5_1", kernel_size=3, stride=1, pad=1, num_output=self._encoder_channels['conv5_1'])
            conv6            = nd.scope.conv_nl(conv5_1, name="conv6",   kernel_size=3, stride=2, pad=1, num_output=self._encoder_channels['conv6'])
            conv6_1          = nd.scope.conv_nl(conv6,   name="conv6_1", kernel_size=3, stride=1, pad=1, num_output=self._encoder_channels['conv6_1'])

            prediction6        = self.predict(conv6_1, level=6, loss_weight=self._loss_weights['level6'], out=out)

        with nd.Scope('decoder'):

            decoder5, prediction5 = \
                self.refine(level=5,
                            input=conv6_1,
                            input_prediction=prediction6,
                            features=conv5_1, out=out)

            if self._exit_after == 5:
                out.final = out.levels[5]
                return out

            decoder4, prediction4 = \
                self.refine(level=4,
                            input=decoder5,
                            input_prediction=prediction5,
                            features=conv4_1, out=out)

            if self._exit_after == 4:
                out.final = out.levels[4]
                return out

            decoder3, prediction3 = \
                self.refine(level=3,
                            input=decoder4,
                            input_prediction=prediction4,
                            features=conv3_1, out=out)

            if self._exit_after == 3:
                out.final = out.levels[3]
                return out

            decoder2, prediction2 = \
                self.refine(level=2,
                            input=decoder3,
                            input_prediction=prediction3,
                            features=input.conv2a, out=out)

            if self._exit_after == 2:
                out.final = out.levels[2]
                return out

            decoder1, prediction1 = \
                self.refine(level=1,
                            input=decoder2,
                            input_prediction=prediction2,
                            features=input.conv1a, out=out)

            if self._exit_after == 1:
                out.final = out.levels[1]
                return out

            if edge_features is None:
                raise BaseException('Architecture_S needs edge features if now shallow')

            edges = nd.scope.conv_nl(edge_features,
                                name="conv_edges",
                                kernel_size=3,
                                stride=1,
                                pad=1,
                                num_output=self._decoder_channels['level0'])

            decoder0, prediction0 = \
                self.refine(level=0,
                            input=decoder1,
                            input_prediction=prediction1,
                            features=edges, out=out)

            out.final = out.levels[0]
            return out
Exemplo n.º 10
0
    def make_graph(self, data, include_losses=True):
        pred_config = nd.PredConfig()
        pred_config.add(
            nd.PredConfigId(type='disp',
                            perspective='L',
                            channels=1,
                            scale=self._scale,
                            mod_func=lambda b: nd.ops.neg_relu(b)))

        pred_config.add(
            nd.PredConfigId(
                type='occ',
                perspective='L',
                channels=2,
                scale=self._scale,
            ))

        with nd.Scope('net1', learn=False, **self.scope_args()):
            arch1 = Architecture_C(
                num_outputs=pred_config.total_channels(),
                disassembling_function=pred_config.disassemble,
                loss_function=None,
                conv_upsample=self._conv_upsample,
                channel_factor=0.375)
            out1 = arch1.make_graph(data.img.L,
                                    data.img.R,
                                    use_1D_corr=True,
                                    single_direction=0)
        disp1 = out1.final.disp.L
        occ1 = self.resample_occ(out1.final.occ.L, data.img.L)

        upsampled_disp1 = nd.ops.differentiable_resample(disp1,
                                                         reference=data.img.L)
        pred_config[0].mod_func = lambda x: nd.ops.add(
            x,
            nd.ops.resample(disp1, reference=x, type='LINEAR', antialias=False)
        )
        pred_config[1].mod_func = lambda x: nd.ops.add(
            x,
            nd.ops.resample(occ1, reference=x, type='LINEAR', antialias=False))

        warped = nd.ops.warp(data.img.R, nd.ops.disp_to_flow(upsampled_disp1))

        input2 = nd.ops.concat(data.img.L, data.img.R,
                               nd.ops.scale(upsampled_disp1, 0.05), warped,
                               occ1)

        with nd.Scope('net2', learn=False, **self.scope_args()):
            arch2 = Architecture_S(
                num_outputs=pred_config.total_channels(),
                disassembling_function=pred_config.disassemble,
                loss_function=None,
                conv_upsample=self._conv_upsample,
                channel_factor=0.375)
            out2 = arch2.make_graph(input2)
        ## Net 3

        disp2 = out2.final.disp.L
        occ2 = self.resample_occ(out2.final.occ.L, data.img.L)

        upsampled_disp2 = nd.ops.differentiable_resample(disp2,
                                                         reference=data.img.L)
        pred_config.add(
            nd.PredConfigId(type='db',
                            perspective='L',
                            channels=2,
                            scale=self._scale))

        pred_config[0].mod_func = lambda x: nd.ops.add(
            x,
            nd.ops.resample(disp2, reference=x, type='LINEAR', antialias=False)
        )
        pred_config[1].mod_func = lambda x: nd.ops.add(
            x,
            nd.ops.resample(occ2, reference=x, type='LINEAR', antialias=False))

        warped = nd.ops.warp(data.img.R, nd.ops.disp_to_flow(upsampled_disp2))

        input3 = nd.ops.concat(data.img.L, data.img.R,
                               nd.ops.scale(upsampled_disp2, 0.05), warped,
                               occ2)

        with nd.Scope('net3', learn=True, **self.scope_args()):
            arch3 = Architecture_S(
                num_outputs=pred_config.total_channels(),
                disassembling_function=pred_config.disassemble,
                loss_function=None,
                conv_upsample=self._conv_upsample,
                exit_after=0,
                channel_factor=0.375)
            out3 = arch3.make_graph(input3, edge_features=data.img.L)
        return out3