def get_cammoun_schaefer(vers='fsaverage5', data_dir=None, networks='7'):
    """
    Returns Cammoun 2012 and Schaefer 2018 atlases as dictionary

    Parameters
    ----------
    vers : str, optional
        Which version of the atlases to get. Default: 'fsaverage5'
    data_dir : str or os.PathLike, optional
        Data directory where downloaded atlases should be stored. If not
        specified will default to $NNT_DATA or ~/nnt-data
    networks : {'7', '17'}, optional
        Which networks to get for Schaefer 2018 atlas. Default: '7'

    Returns
    -------
    atlases : dict
        Where keys are 'atl-cammoun2012' and 'atl-schaefer2018'
    """
    cammoun = nndata.fetch_cammoun2012(vers, data_dir=data_dir)
    schaefer = nndata.fetch_schaefer2018('fsaverage5', data_dir=data_dir)
    schaefer = {
        k: schaefer.get(k)
        for k in schaefer.keys() if 'Parcels7Networks' in k
    }

    return {'atl-cammoun2012': cammoun, 'atl-schaefer2018': schaefer}
Exemplo n.º 2
0
def test_fetch_schaefer2018(tmpdir, version):
    keys = [
        '{}Parcels{}Networks'.format(p, n) for p in range(100, 1001, 100)
        for n in [7, 17]
    ]
    schaefer = datasets.fetch_schaefer2018(version, data_dir=tmpdir, verbose=0)

    assert all(k in schaefer and len(schaefer[k]) == 2 and all(
        os.path.isfile(hemi) for hemi in schaefer[k]) for k in keys)
Exemplo n.º 3
0
def get_schaefer2018_yeo(scale, data_dir=None):
    """
    Returns Yeo RSN affiliations for Schaefer parcellation

    Parameters
    ----------
    scale : str
        Scale of Schaefer et al., 2018 to use
    data_dir : str or os.PathLike
        Directory where parcellation should be downloaded to (or exists, if
        already downloaded). Default: None

    Returns
    -------
    labels : (2,) namedtuple
        Where the first entry ('vertices') is the vertex-level RSN affiliations
        and the second entry ('parcels') is the parcel-level RSN affiliations
    """

    # substring in schaefer parcel names indiciating yeo network affiliation
    schaefer_yeo = dict(Vis='visual',
                        SomMot='somatomotor',
                        DorsAttn='dorsal attention',
                        SalVentAttn='ventral attention',
                        Limbic='limbic',
                        Cont='frontoparietal',
                        Default='default mode')

    # get requested annotation files
    schaefer = nndata.fetch_schaefer2018('fsaverage5',
                                         data_dir=data_dir)[scale]

    network_labels, parcel_labels = [], []
    for hemi in ('lh', 'rh'):
        # read in annotation file for given hemisphere
        annot = getattr(schaefer, hemi)
        labels, ctab, names = nib.freesurfer.read_annot(annot)
        names = [m.decode() for m in names]

        # create empty arrays for vertex- and parcel-level affiliations
        networks = np.zeros_like(labels)
        parcels = np.zeros(len(names), dtype=int)
        for n, parcel in enumerate(names):
            for abbrev, net in schaefer_yeo.items():
                # check which network this parcel belongs to by looking for the
                # network substring in the parcel name and assign accordingly
                if abbrev in parcel:
                    parcels[n] = YEO_CODES[net]
                    networks[labels == n] = YEO_CODES[net]

        # store network affiliations for this hemisphere
        network_labels.append(networks)
        parcel_labels.append(parcels)

    return NETWORKS(np.hstack(network_labels), np.hstack(parcel_labels))
Exemplo n.º 4
0
def _fetch_schaefer_parcellation(template: str, n_regions: int,
                                 seven_networks: int,
                                 data_dir: Path) -> List[np.ndarray]:
    """Fetches Schaefer parcellations."""
    n_networks = 7 if seven_networks else 17
    key = f"{n_regions}Parcels{n_networks}Networks"
    bunch = nnt_datasets.fetch_schaefer2018(version=template,
                                            data_dir=str(data_dir))
    if template == "fslr32k":
        cifti = nib_load(bunch[key])
        parcellation_full = np.squeeze(cifti.get_fdata())
        parcellations = [x for x in np.reshape(parcellation_full, (2, -1))]
    else:
        parcellations = [read_annot(file)[0] for file in bunch[key]]
        parcellations[1][parcellations[1] != 0] += n_regions // 2
    return parcellations
Exemplo n.º 5
0
def get_schaefer2018_vek(scale, data_dir=None):
    """
    Returns von Economo cytoarchitectonic classes for Schaefer parcellation

    Parameters
    ----------
    scale : str
        Scale of Schaefer et al., 2018 to use
    data_dir : str or os.PathLike
        Directory where parcellation should be downloaded to (or exists, if
        already downloaded). Default: None

    Returns
    -------
    labels : (2,) namedtuple
        Where the first entry ('vertices') is the vertex-level classes and the
        second entry ('parcels') is the parcel-level classes
    """

    schaefer = nndata.fetch_schaefer2018('fsaverage5',
                                         data_dir=data_dir)[scale]
    vek_annots = _apply_vek_prob(data_dir=data_dir)
    return _parcellate_vek_classes(schaefer, vek_annots)
Exemplo n.º 6
0
def plot_brain_surface(values,
                       network,
                       hemi=None,
                       cmap="viridis",
                       alpha=0.8,
                       colorbar=True,
                       centered=False,
                       vmin=None,
                       vmax=None,
                       representation='surface'):
    '''
    Function to plot data on the brain, on a surface parcellation.

    PARAMETERS
    ----------
    values : ndarray (n,)
        Values to be plotted on the brain, where n is the number of nodes in
        the parcellation.
    network : dictionary
        Dictionary storing the network on associated with the values (to be
        used to identify the adequate surface parcellation)
    '''

    cortical_hemi_mask = network['hemi_mask'][network['subcortex_mask'] == 0]
    n = len(cortical_hemi_mask)

    if hemi is None:
        hemi = network['info']['hemi']

    if hemi == "L":
        scores = np.zeros((n)) + np.mean(values)
        scores[cortical_hemi_mask == 1] = values
        values = scores
    elif hemi == "R":
        scores = np.zeros((n)) + np.mean(values)
        scores[cortical_hemi_mask == 0] = values
        values = scores

    order = network["order"]
    noplot = network["noplot"]
    lh = network["lhannot"]
    rh = network["rhannot"]

    if os.path.isfile(lh) or os.path.isfile(rh) is False:
        fetch_cammoun2012(version='fsaverage')
        fetch_schaefer2018()

    # Adjust colormap based on parameters
    if centered is True:
        m = max(abs(np.amin(values)), np.amax(values))
        vmin = -m
        vmax = m
    else:
        if vmin is None:
            vmin = np.amin(values)
        if vmax is None:
            vmax = np.amax(values)

    # Plot the brain surface
    im = plot_fsaverage(values,
                        lhannot=lh,
                        rhannot=rh,
                        noplot=noplot,
                        order=order,
                        views=['lateral', 'm'],
                        vmin=vmin,
                        vmax=vmax,
                        colormap=cmap,
                        alpha=alpha,
                        colorbar=colorbar,
                        data_kws={'representation': representation},
                        show_toolbar=True)

    return im