Exemplo n.º 1
0
    for i in range(freeze_layers[phi]):
        model.layers[i].trainable = False

    if True:
        #--------------------------------------------#
        #   BATCH_SIZE不要太小,不然训练效果很差
        #--------------------------------------------#
        BATCH_SIZE = 4
        Lr = 1e-3
        Init_Epoch = 0
        Freeze_Epoch = 50
        gen = Generator(bbox_util, BATCH_SIZE, lines[:num_train],
                        lines[num_train:],
                        (image_sizes[phi], image_sizes[phi]), NUM_CLASSES)
        model.compile(loss={
            'regression': smooth_l1(),
            'classification': focal()
        },
                      optimizer=keras.optimizers.Adam(Lr))
        print('Train on {} samples, val on {} samples, with batch size {}.'.
              format(num_train, num_val, BATCH_SIZE))
        model.fit(gen.generate(True, eager=False),
                  steps_per_epoch=max(1, num_train // BATCH_SIZE),
                  validation_data=gen.generate(False, eager=False),
                  validation_steps=max(1, num_val // BATCH_SIZE),
                  epochs=Freeze_Epoch,
                  verbose=1,
                  initial_epoch=Init_Epoch,
                  callbacks=[logging, checkpoint, reduce_lr, early_stopping])

    for i in range(freeze_layers[phi]):
Exemplo n.º 2
0
        epoch_size = num_train // BATCH_SIZE
        epoch_size_val = num_val // BATCH_SIZE

        lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
            initial_learning_rate=Lr,
            decay_steps=epoch_size,
            decay_rate=0.95,
            staircase=True)

        print('Train on {} samples, val on {} samples, with batch size {}.'.
              format(num_train, num_val, BATCH_SIZE))
        optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)

        for epoch in range(Init_Epoch, Freeze_Epoch):
            fit_one_epoch(model, focal(), smooth_l1(), optimizer, epoch,
                          epoch_size, epoch_size_val, gen, gen_val,
                          Freeze_Epoch, get_train_step_fn())

    for i in range(freeze_layers[phi]):
        model.layers[i].trainable = True

    if True:
        #--------------------------------------------#
        #   BATCH_SIZE不要太小,不然训练效果很差
        #--------------------------------------------#
        BATCH_SIZE = 4
        Lr = 5e-5
        Freeze_Epoch = 50
        Epoch = 100