Exemplo n.º 1
0
    def __init__(self, block_args, global_params):
        super().__init__()
        self._block_args = block_args
        # 获得一种卷积方法
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # 获得标准化的参数
        self._bn_mom = 1 - global_params.batch_norm_momentum
        self._bn_eps = global_params.batch_norm_epsilon

        #----------------------------#
        #   计算是否施加注意力机制
        #----------------------------#
        self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
        #----------------------------#
        #   判断是否添加残差边
        #----------------------------#
        self.id_skip = block_args.id_skip 

        #-------------------------------------------------#
        #   利用Inverted residuals
        #   part1 利用1x1卷积进行通道数上升
        #-------------------------------------------------#
        inp = self._block_args.input_filters
        oup = self._block_args.input_filters * self._block_args.expand_ratio
        if self._block_args.expand_ratio != 1:
            self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
            self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)

        #------------------------------------------------------#
        #   如果步长为2x2的话,利用深度可分离卷积进行高宽压缩
        #   part2 利用3x3卷积对每一个channel进行卷积
        #------------------------------------------------------#
        k = self._block_args.kernel_size
        s = self._block_args.stride
        self._depthwise_conv = Conv2d(in_channels=oup, out_channels=oup, groups=oup, kernel_size=k, stride=s, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)

        #------------------------------------------------------#
        #   完成深度可分离卷积后
        #   对深度可分离卷积的结果施加注意力机制
        #------------------------------------------------------#
        if self.has_se:
            num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
            #------------------------------------------------------#
            #   通道先压缩后上升,最后利用sigmoid将值固定到0-1之间
            #------------------------------------------------------#
            self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
            self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)

        #------------------------------------------------------#
        #   part3 利用1x1卷积进行通道下降
        #------------------------------------------------------#
        final_oup = self._block_args.output_filters
        self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
        self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)

        self._swish = MemoryEfficientSwish()
Exemplo n.º 2
0
 def from_pretrained(cls, model_name, load_weights=True, advprop=True, num_classes=1000, in_channels=3):
     model = cls.from_name(model_name, override_params={'num_classes': num_classes})
     if load_weights:
         load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000), advprop=advprop)
     if in_channels != 3:
         Conv2d = get_same_padding_conv2d(image_size = model._global_params.image_size)
         out_channels = round_filters(32, model._global_params)
         model._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
     return model
Exemplo n.º 3
0
    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args
        # 获得一种卷积方法,固定了image_size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # 获得标准化的参数
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # 网络主干部分开始
        # 设定输入进来的是RGB三通道图像
        in_channels = 3
        # 利用round_filters可以使得通道数在扩张的时候可以被8整除
        out_channels = round_filters(32, self._global_params)

        # 卷积+标准化
        self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # 对每个block的参数进行修改
        self._blocks = nn.ModuleList([])
        for i in range(len(self._blocks_args)):
            # 对每个block的参数进行修改,根据所选的efficient版本进行修改
            self._blocks_args[i] = self._blocks_args[i]._replace(
                input_filters=round_filters(self._blocks_args[i].input_filters, self._global_params),
                output_filters=round_filters(self._blocks_args[i].output_filters, self._global_params),
                num_repeat=round_repeats(self._blocks_args[i].num_repeat, self._global_params)
            )

            # 第一次大的Block里面的卷积需要考虑步长和输入进来的通道数!
            self._blocks.append(MBConvBlock(self._blocks_args[i], self._global_params))

            if self._blocks_args[i].num_repeat > 1:
                self._blocks_args[i] = self._blocks_args[i]._replace(input_filters=self._blocks_args[i].output_filters,
                                                                     stride=1)
            for _ in range(self._blocks_args[i].num_repeat - 1):
                self._blocks.append(MBConvBlock(self._blocks_args[i], self._global_params))

        # 增加了head部分
        in_channels = self._blocks_args[len(self._blocks_args) - 1].output_filters
        out_channels = round_filters(1280, self._global_params)  # 32倍降的输出通道

        # 卷积+标准化
        self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # 最后的全连接层
        self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        self._dropout = nn.Dropout(self._global_params.dropout_rate)
        self._fc = nn.Linear(out_channels, self._global_params.num_classes)
        # 进行swish激活函数
        self._swish = MemoryEfficientSwish()
Exemplo n.º 4
0
    def __init__(self, block_args, global_params):
        super().__init__()
        self._block_args = block_args
        # 获得标准化的参数
        self._bn_mom = 1 - global_params.batch_norm_momentum
        self._bn_eps = global_params.batch_norm_epsilon

        # 注意力机制的缩放比例
        self.has_se = (self._block_args.se_ratio is not None) and (
                0 < self._block_args.se_ratio <= 1)
        # 是否需要短接边
        self.id_skip = block_args.id_skip

        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # 1x1卷积通道扩张
        inp = self._block_args.input_filters  # number of input channels
        oup = self._block_args.input_filters * self._block_args.expand_ratio  # number of output channels
        if self._block_args.expand_ratio != 1:
            self._expand_conv = Conv2d(
                in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
            self._bn0 = nn.BatchNorm2d(
                num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)

        # 深度可分离卷积
        k = self._block_args.kernel_size
        s = self._block_args.stride
        self._depthwise_conv = Conv2d(
            in_channels=oup, out_channels=oup, groups=oup,
            kernel_size=k, stride=s, bias=False)
        self._bn1 = nn.BatchNorm2d(
            num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)

        # 注意力机制模块组,先进行通道数的收缩再进行通道数的扩张
        if self.has_se:
            num_squeezed_channels = max(
                1, int(self._block_args.input_filters * self._block_args.se_ratio))
            self._se_reduce = Conv2d(
                in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
            self._se_expand = Conv2d(
                in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)

        # 输出部分
        final_oup = self._block_args.output_filters
        self._project_conv = Conv2d(
            in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
        self._bn2 = nn.BatchNorm2d(
            num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
        self._swish = MemoryEfficientSwish()
Exemplo n.º 5
0
    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args
        # 获得一种卷积方法
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # 获得标准化的参数
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        #-------------------------------------------------#
        #   网络主干部分开始
        #   设定输入进来的是RGB三通道图像
        #   利用round_filters可以使得通道可以被8整除
        #-------------------------------------------------#
        in_channels = 3  
        out_channels = round_filters(32, self._global_params)

        #-------------------------------------------------#
        #   创建stem部分
        #-------------------------------------------------#
        self._conv_stem = Conv2d(
            in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        self._bn0 = nn.BatchNorm2d(
            num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        #-------------------------------------------------#
        #   在这个地方对大结构块进行循环
        #-------------------------------------------------#
        self._blocks = nn.ModuleList([])
        for i in range(len(self._blocks_args)):
            #-------------------------------------------------------------#
            #   对每个block的参数进行修改,根据所选的efficient版本进行修改
            #-------------------------------------------------------------#
            self._blocks_args[i] = self._blocks_args[i]._replace(
                input_filters=round_filters(self._blocks_args[i].input_filters, self._global_params),
                output_filters=round_filters(self._blocks_args[i].output_filters, self._global_params),
                num_repeat=round_repeats(self._blocks_args[i].num_repeat, self._global_params)
            )

            #-------------------------------------------------------------#
            #   每个大结构块里面的第一个EfficientBlock
            #   都需要考虑步长和输入通道数
            #-------------------------------------------------------------#
            self._blocks.append(MBConvBlock(self._blocks_args[i], self._global_params))

            if self._blocks_args[i].num_repeat > 1:
                self._blocks_args[i] = self._blocks_args[i]._replace(input_filters=self._blocks_args[i].output_filters, stride=1)

            #---------------------------------------------------------------#
            #   在利用第一个EfficientBlock进行通道数的调整或者高和宽的压缩后
            #   进行EfficientBlock的堆叠
            #---------------------------------------------------------------#
            for _ in range(self._blocks_args[i].num_repeat - 1):
                self._blocks.append(MBConvBlock(self._blocks_args[i], self._global_params))

        #----------------------------------------------------------------#
        #   这是efficientnet的尾部部分,在进行effcientdet构建的时候没用到
        #   只在利用efficientnet进行分类的时候用到。
        #----------------------------------------------------------------#
        in_channels = self._blocks_args[len(self._blocks_args)-1].output_filters
        out_channels = round_filters(1280, self._global_params)

        self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        self._dropout = nn.Dropout(self._global_params.dropout_rate)
        self._fc = nn.Linear(out_channels, self._global_params.num_classes)

        self._swish = MemoryEfficientSwish()