Exemplo n.º 1
0
 def __init__(self,
              in_channels,
              num_anchors,
              num_classes,
              num_layers,
              onnx_export=False):
     super(ClassNet, self).__init__()
     self.num_anchors = num_anchors
     self.num_classes = num_classes
     self.num_layers = num_layers
     self.conv_list = nn.ModuleList([
         SeparableConvBlock(in_channels,
                            in_channels,
                            norm=False,
                            activation=False) for i in range(num_layers)
     ])
     # 每一个有效特征层对应的BatchNorm2d不同
     self.bn_list = nn.ModuleList([
         nn.ModuleList([
             nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3)
             for i in range(num_layers)
         ]) for j in range(5)
     ])
     # num_anchors = 9
     # num_anchors num_classes
     self.header = SeparableConvBlock(in_channels,
                                      num_anchors * num_classes,
                                      norm=False,
                                      activation=False)
     self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
Exemplo n.º 2
0
    def __init__(self,
                 in_channels,
                 out_channels=None,
                 norm=True,
                 activation=False,
                 onnx_export=False):
        super(SeparableConvBlock, self).__init__()
        if out_channels is None:
            out_channels = in_channels

        self.depthwise_conv = Conv2dStaticSamePadding(in_channels,
                                                      in_channels,
                                                      kernel_size=3,
                                                      stride=1,
                                                      groups=in_channels,
                                                      bias=False)
        self.pointwise_conv = Conv2dStaticSamePadding(in_channels,
                                                      out_channels,
                                                      kernel_size=1,
                                                      stride=1)

        self.norm = norm
        if self.norm:
            self.bn = nn.BatchNorm2d(num_features=out_channels,
                                     momentum=0.01,
                                     eps=1e-3)

        self.activation = activation
        if self.activation:
            self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
Exemplo n.º 3
0
    def __init__(self, block_args, global_params):
        super().__init__()
        self._block_args = block_args
        # 获得一种卷积方法
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # 获得标准化的参数
        self._bn_mom = 1 - global_params.batch_norm_momentum
        self._bn_eps = global_params.batch_norm_epsilon

        #----------------------------#
        #   计算是否施加注意力机制
        #----------------------------#
        self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
        #----------------------------#
        #   判断是否添加残差边
        #----------------------------#
        self.id_skip = block_args.id_skip 

        #-------------------------------------------------#
        #   利用Inverted residuals
        #   part1 利用1x1卷积进行通道数上升
        #-------------------------------------------------#
        inp = self._block_args.input_filters
        oup = self._block_args.input_filters * self._block_args.expand_ratio
        if self._block_args.expand_ratio != 1:
            self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
            self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)

        #------------------------------------------------------#
        #   如果步长为2x2的话,利用深度可分离卷积进行高宽压缩
        #   part2 利用3x3卷积对每一个channel进行卷积
        #------------------------------------------------------#
        k = self._block_args.kernel_size
        s = self._block_args.stride
        self._depthwise_conv = Conv2d(in_channels=oup, out_channels=oup, groups=oup, kernel_size=k, stride=s, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)

        #------------------------------------------------------#
        #   完成深度可分离卷积后
        #   对深度可分离卷积的结果施加注意力机制
        #------------------------------------------------------#
        if self.has_se:
            num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
            #------------------------------------------------------#
            #   通道先压缩后上升,最后利用sigmoid将值固定到0-1之间
            #------------------------------------------------------#
            self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
            self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)

        #------------------------------------------------------#
        #   part3 利用1x1卷积进行通道下降
        #------------------------------------------------------#
        final_oup = self._block_args.output_filters
        self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
        self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)

        self._swish = MemoryEfficientSwish()
Exemplo n.º 4
0
    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args
        # 获得一种卷积方法,固定了image_size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # 获得标准化的参数
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # 网络主干部分开始
        # 设定输入进来的是RGB三通道图像
        in_channels = 3
        # 利用round_filters可以使得通道数在扩张的时候可以被8整除
        out_channels = round_filters(32, self._global_params)

        # 卷积+标准化
        self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # 对每个block的参数进行修改
        self._blocks = nn.ModuleList([])
        for i in range(len(self._blocks_args)):
            # 对每个block的参数进行修改,根据所选的efficient版本进行修改
            self._blocks_args[i] = self._blocks_args[i]._replace(
                input_filters=round_filters(self._blocks_args[i].input_filters, self._global_params),
                output_filters=round_filters(self._blocks_args[i].output_filters, self._global_params),
                num_repeat=round_repeats(self._blocks_args[i].num_repeat, self._global_params)
            )

            # 第一次大的Block里面的卷积需要考虑步长和输入进来的通道数!
            self._blocks.append(MBConvBlock(self._blocks_args[i], self._global_params))

            if self._blocks_args[i].num_repeat > 1:
                self._blocks_args[i] = self._blocks_args[i]._replace(input_filters=self._blocks_args[i].output_filters,
                                                                     stride=1)
            for _ in range(self._blocks_args[i].num_repeat - 1):
                self._blocks.append(MBConvBlock(self._blocks_args[i], self._global_params))

        # 增加了head部分
        in_channels = self._blocks_args[len(self._blocks_args) - 1].output_filters
        out_channels = round_filters(1280, self._global_params)  # 32倍降的输出通道

        # 卷积+标准化
        self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # 最后的全连接层
        self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        self._dropout = nn.Dropout(self._global_params.dropout_rate)
        self._fc = nn.Linear(out_channels, self._global_params.num_classes)
        # 进行swish激活函数
        self._swish = MemoryEfficientSwish()
Exemplo n.º 5
0
    def __init__(self, block_args, global_params):
        super().__init__()
        self._block_args = block_args
        # 获得标准化的参数
        self._bn_mom = 1 - global_params.batch_norm_momentum
        self._bn_eps = global_params.batch_norm_epsilon

        # 注意力机制的缩放比例
        self.has_se = (self._block_args.se_ratio is not None) and (
                0 < self._block_args.se_ratio <= 1)
        # 是否需要短接边
        self.id_skip = block_args.id_skip

        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # 1x1卷积通道扩张
        inp = self._block_args.input_filters  # number of input channels
        oup = self._block_args.input_filters * self._block_args.expand_ratio  # number of output channels
        if self._block_args.expand_ratio != 1:
            self._expand_conv = Conv2d(
                in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
            self._bn0 = nn.BatchNorm2d(
                num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)

        # 深度可分离卷积
        k = self._block_args.kernel_size
        s = self._block_args.stride
        self._depthwise_conv = Conv2d(
            in_channels=oup, out_channels=oup, groups=oup,
            kernel_size=k, stride=s, bias=False)
        self._bn1 = nn.BatchNorm2d(
            num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)

        # 注意力机制模块组,先进行通道数的收缩再进行通道数的扩张
        if self.has_se:
            num_squeezed_channels = max(
                1, int(self._block_args.input_filters * self._block_args.se_ratio))
            self._se_reduce = Conv2d(
                in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
            self._se_expand = Conv2d(
                in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)

        # 输出部分
        final_oup = self._block_args.output_filters
        self._project_conv = Conv2d(
            in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
        self._bn2 = nn.BatchNorm2d(
            num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
        self._swish = MemoryEfficientSwish()
Exemplo n.º 6
0
 def set_swish(self, memory_efficient=True):
     """Sets swish function as memory efficient (for training) or standard (for export)"""
     # swish函数
     self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
     for block in self._blocks:
         block.set_swish(memory_efficient)
Exemplo n.º 7
0
 def set_swish(self, memory_efficient=True):
     """Sets swish function as memory efficient (for training) or standard (for export)"""
     self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
    def __init__(self, num_channels, conv_channels, first_time=False, epsilon=1e-4, onnx_export=False, attention=True):
        super(BiFPN, self).__init__()
        self.epsilon = epsilon
        self.conv6_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv5_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv4_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv3_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)

        self.conv4_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv5_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv6_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv7_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)

        self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest')

        self.p4_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p5_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p6_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p7_downsample = MaxPool2dStaticSamePadding(3, 2)

        self.swish = MemoryEfficientSwish() if not onnx_export else Swish()

        self.first_time = first_time
        if self.first_time:
            # 获取到了efficientnet的最后三层,对其进行通道的下压缩
            self.p5_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p4_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p3_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[0], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )

            # 对输入进来的p5进行宽高的下采样
            self.p5_to_p6 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
                MaxPool2dStaticSamePadding(3, 2)
            )
            self.p6_to_p7 = nn.Sequential(
                MaxPool2dStaticSamePadding(3, 2)
            )

            # BIFPN第一轮的时候,跳线那里并不是同一个in
            self.p4_down_channel_2 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p5_down_channel_2 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )

        # 简易注意力机制的weights
        self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p6_w1_relu = nn.ReLU()
        self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p5_w1_relu = nn.ReLU()
        self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p4_w1_relu = nn.ReLU()
        self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p3_w1_relu = nn.ReLU()

        self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.p4_w2_relu = nn.ReLU()
        self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.p5_w2_relu = nn.ReLU()
        self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.p6_w2_relu = nn.ReLU()
        self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p7_w2_relu = nn.ReLU()

        self.attention = attention
Exemplo n.º 9
0
    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args
        # 获得一种卷积方法
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # 获得标准化的参数
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        #-------------------------------------------------#
        #   网络主干部分开始
        #   设定输入进来的是RGB三通道图像
        #   利用round_filters可以使得通道可以被8整除
        #-------------------------------------------------#
        in_channels = 3  
        out_channels = round_filters(32, self._global_params)

        #-------------------------------------------------#
        #   创建stem部分
        #-------------------------------------------------#
        self._conv_stem = Conv2d(
            in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        self._bn0 = nn.BatchNorm2d(
            num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        #-------------------------------------------------#
        #   在这个地方对大结构块进行循环
        #-------------------------------------------------#
        self._blocks = nn.ModuleList([])
        for i in range(len(self._blocks_args)):
            #-------------------------------------------------------------#
            #   对每个block的参数进行修改,根据所选的efficient版本进行修改
            #-------------------------------------------------------------#
            self._blocks_args[i] = self._blocks_args[i]._replace(
                input_filters=round_filters(self._blocks_args[i].input_filters, self._global_params),
                output_filters=round_filters(self._blocks_args[i].output_filters, self._global_params),
                num_repeat=round_repeats(self._blocks_args[i].num_repeat, self._global_params)
            )

            #-------------------------------------------------------------#
            #   每个大结构块里面的第一个EfficientBlock
            #   都需要考虑步长和输入通道数
            #-------------------------------------------------------------#
            self._blocks.append(MBConvBlock(self._blocks_args[i], self._global_params))

            if self._blocks_args[i].num_repeat > 1:
                self._blocks_args[i] = self._blocks_args[i]._replace(input_filters=self._blocks_args[i].output_filters, stride=1)

            #---------------------------------------------------------------#
            #   在利用第一个EfficientBlock进行通道数的调整或者高和宽的压缩后
            #   进行EfficientBlock的堆叠
            #---------------------------------------------------------------#
            for _ in range(self._blocks_args[i].num_repeat - 1):
                self._blocks.append(MBConvBlock(self._blocks_args[i], self._global_params))

        #----------------------------------------------------------------#
        #   这是efficientnet的尾部部分,在进行effcientdet构建的时候没用到
        #   只在利用efficientnet进行分类的时候用到。
        #----------------------------------------------------------------#
        in_channels = self._blocks_args[len(self._blocks_args)-1].output_filters
        out_channels = round_filters(1280, self._global_params)

        self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        self._dropout = nn.Dropout(self._global_params.dropout_rate)
        self._fc = nn.Linear(out_channels, self._global_params.num_classes)

        self._swish = MemoryEfficientSwish()