def __init__(
        self,
        config,
        device,
        transform=transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize(
                    mean=StereoMatcherBase.IMAGENET_MEAN,
                    std=StereoMatcherBase.IMAGENET_STD,
                ),
            ]
        ),
    ):

        StereoMatcherBase.__init__(self, config=config, device=device, transform=transform)

        self._model = nets.AANet(
            config.max_disp,
            num_downsample=config.num_downsample,
            feature_type=config.feature_type,
            no_feature_mdconv=config.no_feature_mdconv,
            feature_pyramid=config.feature_pyramid,
            feature_pyramid_network=config.feature_pyramid_network,
            feature_similarity=config.feature_similarity,
            aggregation_type=config.aggregation_type,
            num_scales=config.num_scales,
            num_fusions=config.num_fusions,
            num_stage_blocks=config.num_stage_blocks,
            num_deform_blocks=config.num_deform_blocks,
            no_intermediate_supervision=config.no_intermediate_supervision,
            refinement_type=config.refinement_type,
            mdconv_dilation=config.mdconv_dilation,
            deformable_groups=config.deformable_groups,
        )

        self._model = self._model.to(device)
        utils.load_pretrained_net(self._model, config.model_path, no_strict=True)

        self._model.eval()
Exemplo n.º 2
0
def main():
    # For reproducibility
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    np.random.seed(args.seed)

    torch.backends.cudnn.benchmark = True

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # Test loader
    test_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)])
    test_data = dataloader.StereoDataset(data_dir=args.data_dir,
                                         dataset_name=args.dataset_name,
                                         mode=args.mode,
                                         save_filename=True,
                                         transform=test_transform)
    test_loader = DataLoader(dataset=test_data, batch_size=args.batch_size, shuffle=False,
                             num_workers=args.num_workers, pin_memory=True, drop_last=False)

    aanet = nets.AANet(args.max_disp,
                       num_downsample=args.num_downsample,
                       feature_type=args.feature_type,
                       no_feature_mdconv=args.no_feature_mdconv,
                       feature_pyramid=args.feature_pyramid,
                       feature_pyramid_network=args.feature_pyramid_network,
                       feature_similarity=args.feature_similarity,
                       aggregation_type=args.aggregation_type,
                       num_scales=args.num_scales,
                       num_fusions=args.num_fusions,
                       num_stage_blocks=args.num_stage_blocks,
                       num_deform_blocks=args.num_deform_blocks,
                       no_intermediate_supervision=args.no_intermediate_supervision,
                       refinement_type=args.refinement_type,
                       mdconv_dilation=args.mdconv_dilation,
                       deformable_groups=args.deformable_groups).to(device)

    # print(aanet)

    if os.path.exists(args.pretrained_aanet):
        print('=> Loading pretrained AANet:', args.pretrained_aanet)
        utils.load_pretrained_net(aanet, args.pretrained_aanet, no_strict=True)
    else:
        print('=> Using random initialization')

    # Save parameters
    num_params = utils.count_parameters(aanet)
    print('=> Number of trainable parameters: %d' % num_params)

    if torch.cuda.device_count() > 1:
        print('=> Use %d GPUs' % torch.cuda.device_count())
        aanet = torch.nn.DataParallel(aanet)

    # Inference
    aanet.eval()

    inference_time = 0
    num_imgs = 0

    num_samples = len(test_loader)
    print('=> %d samples found in the test set' % num_samples)

    for i, sample in enumerate(test_loader):
        if args.count_time and i == args.num_images:  # testing time only
            break

        if i % 100 == 0:
            print('=> Inferencing %d/%d' % (i, num_samples))

        left = sample['left'].to(device)  # [B, 3, H, W]
        right = sample['right'].to(device)

        # Pad
        ori_height, ori_width = left.size()[2:]
        if ori_height < args.img_height or ori_width < args.img_width:
            top_pad = args.img_height - ori_height
            right_pad = args.img_width - ori_width

            # Pad size: (left_pad, right_pad, top_pad, bottom_pad)
            left = F.pad(left, (0, right_pad, top_pad, 0))
            right = F.pad(right, (0, right_pad, top_pad, 0))

        # Warmup
        if i == 0 and args.count_time:
            with torch.no_grad():
                for _ in range(10):
                    aanet(left, right)

        num_imgs += left.size(0)

        with torch.no_grad():
            time_start = time.perf_counter()
            pred_disp = aanet(left, right)[-1]  # [B, H, W]
            inference_time += time.perf_counter() - time_start

        if pred_disp.size(-1) < left.size(-1):
            pred_disp = pred_disp.unsqueeze(1)  # [B, 1, H, W]
            pred_disp = F.interpolate(pred_disp, (left.size(-2), left.size(-1)),
                                      mode='bilinear', align_corners=True, recompute_scale_factor=True) * (left.size(-1) / pred_disp.size(-1))
            pred_disp = pred_disp.squeeze(1)  # [B, H, W]

        # Crop
        if ori_height < args.img_height or ori_width < args.img_width:
            if right_pad != 0:
                pred_disp = pred_disp[:, top_pad:, :-right_pad]
            else:
                pred_disp = pred_disp[:, top_pad:]

        for b in range(pred_disp.size(0)):
            disp = pred_disp[b].detach().cpu().numpy()  # [H, W]
            save_name = sample['left_name'][b]
            save_name = os.path.join(args.output_dir, save_name)
            utils.check_path(os.path.dirname(save_name))
            if not args.count_time:
                if args.save_type == 'pfm':
                    if args.visualize:
                        skimage.io.imsave(save_name, (disp * 256.).astype(np.uint16))

                    save_name = save_name[:-3] + 'pfm'
                    write_pfm(save_name, disp)
                elif args.save_type == 'npy':
                    save_name = save_name[:-3] + 'npy'
                    np.save(save_name, disp)
                else:
                    skimage.io.imsave(save_name, (disp * 256.).astype(np.uint16))

    print('=> Mean inference time for %d images: %.3fs' % (num_imgs, inference_time / num_imgs))
Exemplo n.º 3
0
def main():
    # For reproducibility
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    np.random.seed(args.seed)

    torch.backends.cudnn.benchmark = True

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # Test loader
    test_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
    ])

    aanet = nets.AANet(
        args.max_disp,
        num_downsample=args.num_downsample,
        feature_type=args.feature_type,
        no_feature_mdconv=args.no_feature_mdconv,
        feature_pyramid=args.feature_pyramid,
        feature_pyramid_network=args.feature_pyramid_network,
        feature_similarity=args.feature_similarity,
        aggregation_type=args.aggregation_type,
        num_scales=args.num_scales,
        num_fusions=args.num_fusions,
        num_stage_blocks=args.num_stage_blocks,
        num_deform_blocks=args.num_deform_blocks,
        no_intermediate_supervision=args.no_intermediate_supervision,
        refinement_type=args.refinement_type,
        mdconv_dilation=args.mdconv_dilation,
        deformable_groups=args.deformable_groups).to(device)

    if os.path.exists(args.pretrained_aanet):
        print('=> Loading pretrained AANet:', args.pretrained_aanet)
        utils.load_pretrained_net(aanet, args.pretrained_aanet, no_strict=True)
    else:
        print('=> Using random initialization')

    if torch.cuda.device_count() > 1:
        print('=> Use %d GPUs' % torch.cuda.device_count())
        aanet = torch.nn.DataParallel(aanet)

    # Inference
    aanet.eval()

    if args.data_dir.endswith('/'):
        args.data_dir = args.data_dir[:-1]

    # all_samples = sorted(glob(args.data_dir + '/*left.png'))
    all_samples = sorted(glob(args.data_dir + '/left/*.png'))

    num_samples = len(all_samples)
    print('=> %d samples found in the data dir' % num_samples)

    for i, sample_name in enumerate(all_samples):
        if i % 100 == 0:
            print('=> Inferencing %d/%d' % (i, num_samples))

        left_name = sample_name

        right_name = left_name.replace('left', 'right')

        left = read_img(left_name)
        right = read_img(right_name)
        sample = {'left': left, 'right': right}
        sample = test_transform(sample)  # to tensor and normalize

        left = sample['left'].to(device)  # [3, H, W]
        left = left.unsqueeze(0)  # [1, 3, H, W]
        right = sample['right'].to(device)
        right = right.unsqueeze(0)

        # Pad
        ori_height, ori_width = left.size()[2:]

        # Automatic
        factor = 48
        args.img_height = math.ceil(ori_height / factor) * factor
        args.img_width = math.ceil(ori_width / factor) * factor

        if ori_height < args.img_height or ori_width < args.img_width:
            top_pad = args.img_height - ori_height
            right_pad = args.img_width - ori_width

            # Pad size: (left_pad, right_pad, top_pad, bottom_pad)
            left = F.pad(left, (0, right_pad, top_pad, 0))
            right = F.pad(right, (0, right_pad, top_pad, 0))

        with torch.no_grad():
            pred_disp = aanet(left, right)[-1]  # [B, H, W]

        if pred_disp.size(-1) < left.size(-1):
            pred_disp = pred_disp.unsqueeze(1)  # [B, 1, H, W]
            pred_disp = F.interpolate(
                pred_disp, (left.size(-2), left.size(-1)),
                mode='bilinear') * (left.size(-1) / pred_disp.size(-1))
            pred_disp = pred_disp.squeeze(1)  # [B, H, W]

        # Crop
        if ori_height < args.img_height or ori_width < args.img_width:
            if right_pad != 0:
                pred_disp = pred_disp[:, top_pad:, :-right_pad]
            else:
                pred_disp = pred_disp[:, top_pad:]

        disp = pred_disp[0].detach().cpu().numpy()  # [H, W]

        save_name = os.path.basename(
            left_name)[:-4] + '_' + args.save_suffix + '.png'
        save_name = os.path.join(args.output_dir, save_name)

        if args.save_type == 'pfm':
            if args.visualize:
                skimage.io.imsave(save_name, (disp * 256.).astype(np.uint16))

            save_name = save_name[:-3] + 'pfm'
            write_pfm(save_name, disp)
        elif args.save_type == 'npy':
            save_name = save_name[:-3] + 'npy'
            np.save(save_name, disp)
        else:
            skimage.io.imsave(save_name, (disp * 256.).astype(np.uint16))
Exemplo n.º 4
0
def main():
    # For reproducibility
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    np.random.seed(args.seed)

    torch.backends.cudnn.benchmark = True

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # Train loader
    train_transform_list = [transforms.RandomCrop(args.img_height, args.img_width),
                            transforms.RandomColor(),
                            transforms.RandomVerticalFlip(),
                            transforms.ToTensor(),
                            transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
                            ]
    train_transform = transforms.Compose(train_transform_list)

    train_data = dataloader.StereoDataset(data_dir=args.data_dir,
                                          dataset_name=args.dataset_name,
                                          mode='train' if args.mode != 'train_all' else 'train_all',
                                          load_pseudo_gt=args.load_pseudo_gt,
                                          transform=train_transform)

    logger.info('=> {} training samples found in the training set'.format(len(train_data)))

    train_loader = DataLoader(dataset=train_data, batch_size=args.batch_size, shuffle=True,
                              num_workers=args.num_workers, pin_memory=True, drop_last=True)

    # Validation loader
    val_transform_list = [transforms.RandomCrop(args.val_img_height, args.val_img_width, validate=True),
                          transforms.ToTensor(),
                          transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
                         ]
    val_transform = transforms.Compose(val_transform_list)
    val_data = dataloader.StereoDataset(data_dir=args.data_dir,
                                        dataset_name=args.dataset_name,
                                        mode=args.mode,
                                        transform=val_transform)

    val_loader = DataLoader(dataset=val_data, batch_size=args.val_batch_size, shuffle=False,
                            num_workers=args.num_workers, pin_memory=True, drop_last=False)

    # Network
    aanet = nets.AANet(args.max_disp,
                       num_downsample=args.num_downsample,
                       feature_type=args.feature_type,
                       no_feature_mdconv=args.no_feature_mdconv,
                       feature_pyramid=args.feature_pyramid,
                       feature_pyramid_network=args.feature_pyramid_network,
                       feature_similarity=args.feature_similarity,
                       aggregation_type=args.aggregation_type,
                       num_scales=args.num_scales,
                       num_fusions=args.num_fusions,
                       num_stage_blocks=args.num_stage_blocks,
                       num_deform_blocks=args.num_deform_blocks,
                       no_intermediate_supervision=args.no_intermediate_supervision,
                       refinement_type=args.refinement_type,
                       mdconv_dilation=args.mdconv_dilation,
                       deformable_groups=args.deformable_groups).to(device)

    logger.info('%s' % aanet)

    if args.pretrained_aanet is not None:
        logger.info('=> Loading pretrained AANet: %s' % args.pretrained_aanet)
        # Enable training from a partially pretrained model
        utils.load_pretrained_net(aanet, args.pretrained_aanet, no_strict=(not args.strict))

    if torch.cuda.device_count() > 1:
        logger.info('=> Use %d GPUs' % torch.cuda.device_count())
        aanet = torch.nn.DataParallel(aanet)

    # Save parameters
    num_params = utils.count_parameters(aanet)
    logger.info('=> Number of trainable parameters: %d' % num_params)
    save_name = '%d_parameters' % num_params
    open(os.path.join(args.checkpoint_dir, save_name), 'a').close()

    # Optimizer
    # Learning rate for offset learning is set 0.1 times those of existing layers
    specific_params = list(filter(utils.filter_specific_params,
                                  aanet.named_parameters()))
    base_params = list(filter(utils.filter_base_params,
                              aanet.named_parameters()))

    specific_params = [kv[1] for kv in specific_params]  # kv is a tuple (key, value)
    base_params = [kv[1] for kv in base_params]

    specific_lr = args.learning_rate * 0.1
    params_group = [
        {'params': base_params, 'lr': args.learning_rate},
        {'params': specific_params, 'lr': specific_lr},
    ]

    optimizer = torch.optim.Adam(params_group, weight_decay=args.weight_decay)

    # Resume training
    if args.resume:
        # AANet
        start_epoch, start_iter, best_epe, best_epoch = utils.resume_latest_ckpt(
            args.checkpoint_dir, aanet, 'aanet')

        # Optimizer
        utils.resume_latest_ckpt(args.checkpoint_dir, optimizer, 'optimizer')
    else:
        start_epoch = 0
        start_iter = 0
        best_epe = None
        best_epoch = None

    # LR scheduler
    if args.lr_scheduler_type is not None:
        last_epoch = start_epoch if args.resume else start_epoch - 1
        if args.lr_scheduler_type == 'MultiStepLR':
            milestones = [int(step) for step in args.milestones.split(',')]
            lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
                                                                milestones=milestones,
                                                                gamma=args.lr_decay_gamma,
                                                                last_epoch=last_epoch)
        else:
            raise NotImplementedError

    train_model = model.Model(args, logger, optimizer, aanet, device, start_iter, start_epoch,
                              best_epe=best_epe, best_epoch=best_epoch)

    logger.info('=> Start training...')

    if args.evaluate_only:
        assert args.val_batch_size == 1
        train_model.validate(val_loader)
    else:
        for _ in range(start_epoch, args.max_epoch):
            if not args.evaluate_only:
                train_model.train(train_loader)
            if not args.no_validate:
                train_model.validate(val_loader)
            if args.lr_scheduler_type is not None:
                lr_scheduler.step()

        logger.info('=> End training\n\n')
Exemplo n.º 5
0
def main():
    # For reproducibility
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    np.random.seed(args.seed)

    train_loader, val_loader = getDataLoader(args, logger)

    # Network
    aanet = nets.AANet(
        args.max_disp,
        num_downsample=args.num_downsample,
        feature_type=args.feature_type,
        no_feature_mdconv=args.no_feature_mdconv,
        feature_pyramid=args.feature_pyramid,
        feature_pyramid_network=args.feature_pyramid_network,
        feature_similarity=args.feature_similarity,
        aggregation_type=args.aggregation_type,
        useFeatureAtt=args.useFeatureAtt,
        num_scales=args.num_scales,
        num_fusions=args.num_fusions,
        num_stage_blocks=args.num_stage_blocks,
        num_deform_blocks=args.num_deform_blocks,
        no_intermediate_supervision=args.no_intermediate_supervision,
        refinement_type=args.refinement_type,
        mdconv_dilation=args.mdconv_dilation,
        deformable_groups=args.deformable_groups).to(device)

    # logger.info('%s' % aanet) if local_master else None
    if local_master:
        structure_of_net = os.path.join(args.checkpoint_dir,
                                        'structure_of_net.txt')
        with open(structure_of_net, 'w') as f:
            f.write('%s' % aanet)

    if args.pretrained_aanet is not None:
        logger.info('=> Loading pretrained AANet: %s' % args.pretrained_aanet)
        # Enable training from a partially pretrained model
        utils.load_pretrained_net(aanet,
                                  args.pretrained_aanet,
                                  no_strict=(not args.strict))

    aanet.to(device)
    logger.info('=> Use %d GPUs' %
                torch.cuda.device_count()) if local_master else None
    # if torch.cuda.device_count() > 1:
    if args.distributed:
        # aanet = torch.nn.DataParallel(aanet)
        #  尝试分布式训练
        aanet = torch.nn.SyncBatchNorm.convert_sync_batchnorm(aanet)
        aanet = torch.nn.parallel.DistributedDataParallel(
            aanet, device_ids=[local_rank], output_device=local_rank)
        synchronize()

    # Save parameters
    num_params = utils.count_parameters(aanet)
    logger.info('=> Number of trainable parameters: %d' % num_params)
    save_name = '%d_parameters' % num_params
    open(os.path.join(args.checkpoint_dir, save_name), 'a').close(
    ) if local_master else None  # 这是个空文件,只是通过其文件名称指示模型有多少个需要训练的参数

    # Optimizer
    # Learning rate for offset learning is set 0.1 times those of existing layers
    specific_params = list(
        filter(utils.filter_specific_params, aanet.named_parameters()))
    base_params = list(
        filter(utils.filter_base_params, aanet.named_parameters()))

    specific_params = [kv[1]
                       for kv in specific_params]  # kv is a tuple (key, value)
    base_params = [kv[1] for kv in base_params]

    specific_lr = args.learning_rate * 0.1
    params_group = [
        {
            'params': base_params,
            'lr': args.learning_rate
        },
        {
            'params': specific_params,
            'lr': specific_lr
        },
    ]

    optimizer = torch.optim.Adam(params_group, weight_decay=args.weight_decay)

    # Resume training
    if args.resume:
        # 1. resume AANet
        start_epoch, start_iter, best_epe, best_epoch = utils.resume_latest_ckpt(
            args.checkpoint_dir, aanet, 'aanet')
        # 2. resume Optimizer
        utils.resume_latest_ckpt(args.checkpoint_dir, optimizer, 'optimizer')
    else:
        start_epoch = 0
        start_iter = 0
        best_epe = None
        best_epoch = None

    # LR scheduler
    if args.lr_scheduler_type is not None:
        last_epoch = start_epoch if args.resume else start_epoch - 1
        if args.lr_scheduler_type == 'MultiStepLR':
            milestones = [int(step) for step in args.milestones.split(',')]
            lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
                optimizer,
                milestones=milestones,
                gamma=args.lr_decay_gamma,
                last_epoch=last_epoch
            )  # 最后这个last_epoch参数很重要:如果是resume的话,则会自动调整学习率适去应last_epoch。
        else:
            raise NotImplementedError
    # model.Model(object)对AANet做了进一步封装。
    train_model = model.Model(args,
                              logger,
                              optimizer,
                              aanet,
                              device,
                              start_iter,
                              start_epoch,
                              best_epe=best_epe,
                              best_epoch=best_epoch)

    logger.info('=> Start training...')

    trainLoss_dict, trainLossKey, valLoss_dict, valLossKey = getLossRecord(
        netName="AANet")

    if args.evaluate_only:
        assert args.val_batch_size == 1
        train_model.validate(
            val_loader, local_master, valLoss_dict,
            valLossKey)  # test模式。应该设置--evaluate_only,且--mode为“test”。
        # 保存Loss用于分析
        save_loss_for_matlab(trainLoss_dict, valLoss_dict)
    else:
        for epoch in range(start_epoch, args.max_epoch):  # 训练主循环(Epochs)!!!
            if not args.evaluate_only:
                # ensure distribute worker sample different data,
                # set different random seed by passing epoch to sampler
                if args.distributed:
                    train_loader.sampler.set_epoch(epoch)
                    logger.info(
                        'train_loader.sampler.set_epoch({})'.format(epoch))
                train_model.train(train_loader, local_master, trainLoss_dict,
                                  trainLossKey)
            if not args.no_validate:
                train_model.validate(val_loader, local_master, valLoss_dict,
                                     valLossKey)  # 训练模式下:边训练边验证。
            if args.lr_scheduler_type is not None:
                lr_scheduler.step()  # 调整Learning Rate

            # 保存Loss用于分析。每个epoch结束后,都保存一次,覆盖之前的保存。避免必须训练完成才保存的弊端。
            save_loss_for_matlab(trainLoss_dict, valLoss_dict)

        logger.info('=> End training\n\n')