def run_training(log_file):

    # load the data
    print(150 * '*')
    with open("./mnist.pkl", "rb") as fid:
        dataset = pickle.load(fid, encoding='latin1')
    train_x, train_y = dataset[0]
    test_x, test_y = dataset[1]
    train_num = train_x.shape[0]
    test_num = test_x.shape[0]

    # label_index: list of list
    # ex) label_index[3] conatins every indicies of 3 data
    num_classes = FLAGS.num_classes
    label_index = [[] for i in range(num_classes)]
    for i in range(len(train_y)):
        label_index[train_y[i]].append(i)

    # construct the computation graph
    images = tf.placeholder(tf.float32, shape=[None, 1, 28, 28])
    labels = tf.placeholder(tf.int32, shape=[None])
    lr = tf.placeholder(tf.float32)

    features, _ = mnist_net(images)
    centers = func.construct_center(features, FLAGS.num_classes)
    loss = func.dce_loss(features, labels, centers, FLAGS.temp)
    eval_correct = func.evaluation(features, labels, centers)
    find_wrong = func.find_wrong(features, labels, centers)
    train_op = func.training(loss, lr)

    # counts = tf.get_variable('counts', [FLAGS.num_classes], dtype=tf.int32,
    # initializer=tf.constant_initializer(0), trainable=False)
    # add_op, count_op, average_op = net.init_centers(features, labels, centers, counts)

    init = tf.global_variables_initializer()

    # init the variables
    sess = tf.Session()
    sess.run(init)
    #compute_centers(sess, add_op, count_op, average_op, images, labels, train_x, train_y)

    # run the computation graph (training and test)
    epoch = 1
    loss_before = np.inf
    score_before = 0.0
    stopping = 0
    index = list(range(train_num))
    np.random.shuffle(index)
    batch_size = FLAGS.batch_size
    batch_num = train_num // batch_size if train_num % batch_size == 0 else train_num // batch_size + 1
    #saver = tf.train.Saver(max_to_keep=1)

    ratio = FLAGS.ratio
    iter = 0
    step = 0
    log_loss = 0
    log_acc = 0
    # pdb.set_trace()
    # train the framework with the training data
    while stopping < FLAGS.stop:
        time1 = time.time()
        loss_now = 0.0
        score_now = 0.0
        iter += 1
        if iter % 100 == 0:
            print("iter : {}".format(iter))
        wrong_list = np.zeros(num_classes)
        for i in range(batch_num):

            # selecting probability

            class_prob = ratio * wrong_list / batch_size + (
                1 - ratio * sum(wrong_list) / batch_size) / 10
            input_num_list = [
                math.ceil(batch_size * class_prob[j])
                for j in range(num_classes)
            ]
            batch_indicies = []
            for k in range(num_classes):
                rand_smpl = [
                    label_index[k][j] for j in sorted(
                        random.sample(range(len(label_index[k])),
                                      input_num_list[k]))
                ]
                batch_indicies += rand_smpl
            np.random.shuffle(batch_indicies)
            # pdb.set_trace()
            batch_x = train_x[batch_indicies[:batch_size]]
            batch_y = train_y[batch_indicies[:batch_size]]
            # JG
            batch_x_reshp = np.reshape(batch_x, (batch_size, 1, 28, 28))
            # batch_x.shape : (50, 784)
            # images : <tf.Tensor 'Placeholder:0' shape=(?, 1, 28, 28) dtype=float32>
            ##result = sess.run([train_op, loss, eval_correct], feed_dict={images:batch_x,
            ##    labels:batch_y, lr:FLAGS.learning_rate})
            result = sess.run([train_op, loss, eval_correct, find_wrong],
                              feed_dict={
                                  images: batch_x_reshp,
                                  labels: batch_y,
                                  lr: FLAGS.learning_rate
                              })
            loss_now += result[1]
            score_now += result[2]
            wrong_list = result[3]
            log_loss += result[1]
            log_acc += result[2]
            if (step % FLAGS.log_period == 0) and (step != 0):
                log_file.write('{}, loss, {:.3f}, acc, {:.3f}\n'.format(
                    step, log_loss / FLAGS.log_period,
                    log_acc / batch_size / FLAGS.log_period * 100))
                log_loss = 0
                log_acc = 0
            step += 1

        score_now /= train_num

        print('epoch {}: training: loss --> {:.3f}, acc --> {:.3f}%'.format(
            epoch, loss_now, score_now * 100))

        if loss_now > loss_before or score_now < score_before:
            stopping += 1
            FLAGS.learning_rate *= FLAGS.decay
            print("\033[1;31;40mdecay learning rate {}th time!\033[0m".format(
                stopping))

        loss_before = loss_now
        score_before = score_now

        #checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt')
        #saver.save(sess, checkpoint_file, global_step=epoch)

        epoch += 1
        np.random.shuffle(index)

        time2 = time.time()
        print('time for this epoch: {:.3f} minutes'.format(
            (time2 - time1) / 60.0))

    # pdb.set_trace()

    # test the framework with the test data
    test_score = do_eval(sess, eval_correct, images, labels, test_x, test_y)
    print('accuracy on the test dataset: {:.3f}%'.format(test_score * 100))

    # test the framework with the test data
    test_score = do_eval(sess, eval_correct, images, labels, test_x, test_y)

    sess.close()
def run_training():

    # load the data
    print(150 * '*')
    train_x = mnist.train.images
    train_y = mnist.train.labels
    train_y = np.argmax(train_y, axis=1)
    test_x = mnist.test.images
    test_y = mnist.test.labels
    test_y = np.argmax(test_y, axis=1)
    # train_x, train_y = dataset[0]
    # test_x, test_y = dataset[1]
    # train_x = [np.reshape(x, (784, 1)) for x in train_x]
    # train_y = [vectorized_label(x) for x in train_y]
    train_num = train_x.shape[0]
    # test_num = test_x.shape[0]
    print("train:" + str(train_x.shape) + "label:" + str(train_y.shape))
    # construct the computation graph
    images = tf.placeholder(tf.float32, shape=[None, 784])
    labels = tf.placeholder(tf.int32, shape=[None])
    lr = tf.placeholder(tf.float32)

    features, _ = mnist_net(images)
    centers = func.construct_center(features, FLAGS.num_classes)
    loss1 = func.dce_loss(features, labels, centers, FLAGS.temp)
    loss2 = func.pl_loss(features, labels, centers)
    loss = loss1 + FLAGS.weight_pl * loss2
    eval_correct = func.evaluation(features, labels, centers)
    train_op = func.training(loss, lr)

    #counts = tf.get_variable('counts', [FLAGS.num_classes], dtype=tf.int32,
    #    initializer=tf.constant_initializer(0), trainable=False)
    #add_op, count_op, average_op = net.init_centers(features, labels, centers, counts)

    init = tf.global_variables_initializer()

    # initialize the variables
    sess = tf.Session()
    sess.run(init)
    #compute_centers(sess, add_op, count_op, average_op, images, labels, train_x, train_y)

    # run the computation graph (train and test process)
    epoch = 1
    loss_before = np.inf
    score_before = 0.0
    stopping = 0
    index = list(range(train_num))
    np.random.shuffle(index)
    batch_size = FLAGS.batch_size
    # print("batch size",batch_size)
    batch_num = train_num // batch_size if train_num % batch_size == 0 else train_num // batch_size + 1
    #saver = tf.train.Saver(max_to_keep=1)

    # train the framework with the training data
    while stopping < FLAGS.stop:
        time1 = time.time()
        loss_now = 0.0
        score_now = 0.0

        print("centers:", sess.run(centers))

        for i in range(batch_num):
            batch_x = train_x[index[i * batch_size:(i + 1) * batch_size]]
            batch_y = train_y[index[i * batch_size:(i + 1) * batch_size]]
            # print("train images:",batch_x.shape,"label:",batch_y.shape)
            result = sess.run([train_op, loss, eval_correct],
                              feed_dict={
                                  images: batch_x,
                                  labels: batch_y,
                                  lr: FLAGS.learning_rate
                              })
            loss_now += result[1]
            score_now += result[2]
        score_now /= train_num

        print('epoch {}: training: loss --> {:.3f}, acc --> {:.3f}%'.format(
            epoch, loss_now, score_now * 100))
        #print sess.run(centers)

        if loss_now > loss_before or score_now < score_before:
            stopping += 1
            FLAGS.learning_rate *= FLAGS.decay
            print("\033[1;31;40mdecay learning rate {}th time!\033[0m".format(
                stopping))

        loss_before = loss_now
        score_before = score_now

        #checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt')
        #saver.save(sess, checkpoint_file, global_step=epoch)

        epoch += 1
        np.random.shuffle(index)

        time2 = time.time()
        print('time for this epoch: {:.3f} minutes'.format(
            (time2 - time1) / 60.0))

        # test the framework with the test data
        test_score = do_eval(sess, eval_correct, images, labels, test_x,
                             test_y)
        print('测试集准确率 {:.10f}%'.format(test_score * 100))

    sess.close()
Exemplo n.º 3
0
def run_training():

    # load the data
    print (150*'*')
    #with open("mnist.data", "rb") as fid:
    with open("/home/ubuntu/codes/Convolutional-Prototype-Learning/mnist.pkl", "rb") as fid:
        dataset = pickle.load(fid, encoding='latin1')
    train_x, train_y = dataset[0]
    test_x, test_y = dataset[1]
    train_num = train_x.shape[0]
    test_num = test_x.shape[0]

    # construct the computation graph
    images = tf.placeholder(tf.float32, shape=[None,1,28,28])
    labels = tf.placeholder(tf.int32, shape=[None])
    lr= tf.placeholder(tf.float32)

    features, _ = mnist_net(images)
    centers = func.construct_center(features, FLAGS.num_classes)
    loss1 = func.dce_loss(features, labels, centers, FLAGS.temp)
    loss2 = func.pl_loss(features, labels, centers)
    loss = loss1 + FLAGS.weight_pl * loss2
    eval_correct = func.evaluation(features, labels, centers)
    train_op = func.training(loss, lr)
    
    #counts = tf.get_variable('counts', [FLAGS.num_classes], dtype=tf.int32,
    #    initializer=tf.constant_initializer(0), trainable=False)
    #add_op, count_op, average_op = net.init_centers(features, labels, centers, counts)

    init = tf.global_variables_initializer()

    # initialize the variables
    sess = tf.Session()
    sess.run(init)
    #compute_centers(sess, add_op, count_op, average_op, images, labels, train_x, train_y)

    # run the computation graph (train and test process)
    epoch = 1
    loss_before = np.inf
    score_before = 0.0
    stopping = 0
    index = list(range(train_num))
    np.random.shuffle(index)
    batch_size = FLAGS.batch_size
    batch_num = train_num//batch_size if train_num % batch_size==0 else train_num//batch_size+1
    #saver = tf.train.Saver(max_to_keep=1)

    # train the framework with the training data
    while stopping<FLAGS.stop:
        time1 = time.time()
        loss_now = 0.0
        score_now = 0.0
    
        for i in range(batch_num):
            batch_x = train_x[index[i*batch_size:(i+1)*batch_size]]
            batch_y = train_y[index[i*batch_size:(i+1)*batch_size]]
            batch_x_reshp = np.reshape(batch_x, (batch_size, 1, 28, 28))
            result = sess.run([train_op, loss, eval_correct], feed_dict={images:batch_x_reshp,
                labels:batch_y, lr:FLAGS.learning_rate})
            loss_now += result[1]
            score_now += result[2]
        score_now /= train_num

        print ('epoch {}: training: loss --> {:.3f}, acc --> {:.3f}%'.format(epoch, loss_now, score_now*100))
        #print sess.run(centers)
    
        if loss_now > loss_before or score_now < score_before:
            stopping += 1
            FLAGS.learning_rate *= FLAGS.decay
            print ("\033[1;31;40mdecay learning rate {}th time!\033[0m".format(stopping))
            
        loss_before = loss_now
        score_before = score_now

        #checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt')
        #saver.save(sess, checkpoint_file, global_step=epoch)

        epoch += 1
        np.random.shuffle(index)

        time2 = time.time()
        print ('time for this epoch: {:.3f} minutes'.format((time2-time1)/60.0))
    
    pdb.set_trace() 
    # test the framework with the test data
    test_score = do_eval(sess, eval_correct, images, labels, test_x, test_y)
    print ('accuracy on the test dataset: {:.3f}%'.format(test_score*100))

    sess.close()
def run_training():

    # load the data
    print (150*'*')
    #with open("mnist.data", "rb") as fid:
    with open("/home/ubuntu/datasets/mnist.pkl", "rb") as fid:
        dataset = pickle.load(fid, encoding='latin1')
    train_x, train_y = dataset[0]
    test_x, test_y = dataset[1]
    train_num = train_x.shape[0]
    test_num = test_x.shape[0]

    # construct the computation graph
    images = tf.placeholder(tf.float32, shape=[None,1,28,28])
    labels = tf.placeholder(tf.int32, shape=[None])
    lr= tf.placeholder(tf.float32)

    features, _ = mnist_net(images)
    centers = func.construct_center(features, FLAGS.num_classes)
    loss1 = func.dce_loss(features, labels, centers, FLAGS.temp)
    loss2 = func.pl_loss(features, labels, centers)
    loss = loss1 + FLAGS.weight_pl * loss2
    eval_correct = func.evaluation(features, labels, centers)
    train_op = func.training(loss, lr)
    
    #counts = tf.get_variable('counts', [FLAGS.num_classes], dtype=tf.int32,
    #    initializer=tf.constant_initializer(0), trainable=False)
    #add_op, count_op, average_op = net.init_centers(features, labels, centers, counts)
  
    sess = tf.Session()
    load_saver = tf.train.Saver()
    os.makedirs(FLAGS.log_dir, exist_ok=True)
    file_list = os.listdir(FLAGS.log_dir)
    keep_last_int = 0
    last_load_file_name = ''
    for name in file_list:
        if len(name.split('.')) < 2:
            continue
        if keep_last_int < int(name.split('.')[1].split('-')[1]):
            keep_last_int = int(name.split('.')[1].split('-')[1])
            last_load_file_name = '.'.join(name.split('.')[:2])
    load_file = os.path.join(FLAGS.log_dir, last_load_file_name)
    if os.path.isfile(load_file+".meta"):
        load_saver.restore(sess, load_file)
    else:
        init = tf.global_variables_initializer()

        # initialize the variables
        sess = tf.Session()
        sess.run(init)
        #compute_centers(sess, add_op, count_op, average_op, images, labels, train_x, train_y)

        # run the computation graph (train and test process)
        epoch = 1
        loss_before = np.inf
        score_before = 0.0
        stopping = 0
        index = list(range(train_num))
        np.random.shuffle(index)
        batch_size = FLAGS.batch_size
        batch_num = train_num//batch_size if train_num % batch_size==0 else train_num//batch_size+1
        saver = tf.train.Saver(max_to_keep=1)

        # train the framework with the training data
        while stopping<FLAGS.stop:
            time1 = time.time()
            loss_now = 0.0
            score_now = 0.0
        
            for i in range(batch_num):
                batch_x = train_x[index[i*batch_size:(i+1)*batch_size]]
                batch_y = train_y[index[i*batch_size:(i+1)*batch_size]]
                batch_x_reshp = np.reshape(batch_x, (batch_size, 1, 28, 28))
                result = sess.run([train_op, loss, eval_correct], feed_dict={images:batch_x_reshp,
                    labels:batch_y, lr:FLAGS.learning_rate})
                # features_eval = sess.run([features], feed_dict={images:batch_x_reshp, 
                #    labels:batch_y, lr:FLAGS.learning_rate})
                # features_eval.shape (1, 50, 2)
                loss_now += result[1]
                score_now += result[2]
            score_now /= train_num

            print ('epoch {}: training: loss --> {:.3f}, acc --> {:.3f}%'.format(epoch, loss_now, score_now*100))
            print (sess.run(centers))
        
            if loss_now > loss_before or score_now < score_before:
                stopping += 1
                FLAGS.learning_rate *= FLAGS.decay
                print ("\033[1;31;40mdecay learning rate {}th time!\033[0m".format(stopping))
                
            loss_before = loss_now
            score_before = score_now

            checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt')
            saver.save(sess, checkpoint_file, global_step=epoch)

            epoch += 1
            np.random.shuffle(index)

            time2 = time.time()
            print ('time for this epoch: {:.3f} minutes'.format((time2-time1)/60.0))

            break # For testing only the first episode
        
    #pdb.set_trace() 
    # test the framework with the test data
    test_score, eval_dots_perclass = do_eval(sess, eval_correct, images, labels, test_x, test_y, features) 
    compute_overlap(eval_dots_perclass)
    # eval_dots_perclass
    # len(eval_dots_perclass) : 10 [num_categories=10]
    # eval_dots_perclass[0] : dots of category 0
    # eval_dots_perclass[0][0] : (x, y) of index 0 of category 0
    print ('accuracy on the test dataset: {:.3f}%'.format(test_score*100))
    # pdb.set_trace()

    sess.close()