Exemplo n.º 1
0
def train_fpn():
    strategy = tf.distribute.MirroredStrategy()
    with strategy.scope():
        net = resnet()
        rpn_model = net.fpn_net()
        if os.path.exists(cfg.RESNET_PATH):
            print("Successful loading the weight from pre training model.")
            rpn_model.load_weights(cfg.RESNET_PATH, by_name=True)
        optimizer = tf.keras.optimizers.SGD(lr=0.02, momentum=0.9)
        rpn_model.compile(optimizer=optimizer,
                          loss=[
                              rpn_loss_cls, rpn_reg_loss, rpn_loss_cls,
                              rpn_reg_loss, rpn_loss_cls, rpn_reg_loss
                          ])
        early_stop = tf.keras.callbacks.EarlyStopping(monitor="loss",
                                                      patience=3,
                                                      verbose=2)
        gen = data_generator()
    rpn_model.fit(x=gen.g,
                  steps_per_epoch=gen.step_per_epoch,
                  epochs=10,
                  verbose=1,
                  shuffle=True,
                  initial_epoch=0,
                  callbacks=[early_stop],
                  max_queue_size=32,
                  workers=8,
                  use_multiprocessing=True)
    rpn_model.save_weights("fpn_model8.h5")
def main():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    args = parser.parse_args()
    set_logger(log_file=args.log_file, debug_mode=args.debug_mode)

    torch.manual_seed(args.random_seed)
    torch.cuda.manual_seed(args.random_seed)
    cudnn.benchmark = True

    train_loader = VideoIter(dataset_path=args.dataset_path,
                             annotation_path=args.annotation_path,
                             clip_length=args.clip_length,
                             frame_stride=args.frame_interval,
                             video_transform=build_transforms(),
                             name='Features extraction')

    train_iter = torch.utils.data.DataLoader(
        train_loader,
        batch_size=args.batch_size,
        shuffle=False,
        num_workers=args.num_workers,  # 4, # change this part accordingly
        pin_memory=True)

    # Loading network
    if args.feature_extractor == 'c3d':
        network = C3D(pretrained=args.pretrained_c3d)
    elif args.feature_extractor == 'resnet':
        network = resnet(200)
    network.load_state_dict(
        torch.load('network/r3d200_K_200ep.pth')['state_dict'])
    network = network.to(device)

    if not path.exists(args.save_dir):
        mkdir(args.save_dir)

    features_writer = FeaturesWriter()

    for i_batch, (data, target, sampled_idx, dirs,
                  vid_names) in tqdm(enumerate(train_iter)):
        with torch.no_grad():
            outputs = network(data.to(device)).detach().cpu().numpy()

            for i, (dir, vid_name, start_frame) in enumerate(
                    zip(dirs, vid_names,
                        sampled_idx.cpu().numpy())):
                dir = path.join(args.save_dir, dir)
                features_writer.write(feature=outputs[i],
                                      video_name=vid_name,
                                      idx=start_frame,
                                      dir=dir)

    features_writer.dump()
Exemplo n.º 3
0
def test_rpn():
    net = resnet()
    generator = data_generator_rpn()
    fpn_rpn = net.fpn_net()
    fpn_rpn.load_weights(
        "/Network/Servers/lab.cs.uwlax.edu/nfs-homes/zhou2494/Desktop/expirements/fpn_model8.h5",
        by_name=True)
    for i in range(100):
        data = next(generator.generator)
        output = fpn_rpn.predict_on_batch(data[0])
        xclass_small, xloc_small, xclass_mid, xloc_mid, xclass_large, xloc_large = output
        cy, cx, type = generate_cx(xclass_large)
        draw_rpn_result(cy, cx, type, xloc_large, data[0], 8, data[2])
        cy, cx, type = generate_cx(xclass_small)
        draw_rpn_result(cy, cx, type, xloc_small, data[0], 32, data[2])
        cy, cx, type = generate_cx(xclass_mid)
        draw_rpn_result(cy, cx, type, xloc_mid, data[0], 16, data[2])
Exemplo n.º 4
0
def check_data_generator(generator, rpn_y, img_info, rpn_stride, name):
    """
    The method to draw box to check rpn network data generator
    :param rpn_x:
    :param rpn_y: the box_cls[1,h,w,36],the box_reg[1,w,h,72]
    :param img_info:
    :return:
    """
    std = cfg.TRAIN.std_scaling
    network = resnet()
    box_cls, box_loc = rpn_y
    f_width = box_loc.shape[2]
    f_height = box_loc.shape[1]
    index, box_loc = get_index(box_cls, box_loc)
    draw_boxes_reg = box_loc[index] / std
    im, box = loadimg(img_info, generator)
    print(img_info.get('index'))
    # f_width,f_height=network.cal_fm_size(im.width,im.height)
    np_im = np.array(im)
    gt_box = img_info.get('change_box')
    w = gt_box[2] - gt_box[0]
    h = gt_box[3] - gt_box[1]
    np_im = drawbox(np_im, (255, 0, 0), [gt_box[0], gt_box[1], w, h], 3)
    larges = generator_anchor()
    record = []
    for h in range(f_height):
        for w in range(f_width):
            for large in larges:
                record.append([
                    w * rpn_stride - large[0] / 2,
                    h * rpn_stride - large[1] / 2, large[0], large[1]
                ])
    record = np.array(record)
    draw_box = record[index]
    print('valid positive number is : ' + str(len(draw_boxes_reg)))
    for i in range(len(draw_boxes_reg)):
        np_im = drawbox(np_im, (0, 255, 0), draw_box[i], 1)
        box = transform_reg(draw_box[i], draw_boxes_reg[i])
        np_im = drawbox(np_im, (0, 0, 255), box, 1)
    cv2.imwrite('tst' + img_info.get('index') + name + '.png', np_im)
Exemplo n.º 5
0
 def __init__(self):
     super(data_generator, self).__init__('train', resnet())
     self.map_whidth, self.map_height = self.network.cal_fm_size(960,
                                                                 960,
                                                                 isFPN=True)
Exemplo n.º 6
0
def test():
    data = imdb('test')
    data_gen = data_generator_rpn()
    img_input = tf.keras.layers.Input((None, None, 3))
    network =resnet()
    fpn_net=network.fpn_net(img_input)
    map_large, map_mid, map_small = network.resnet_50(is_share=True, inpt=img_input, is_FPN=True)
    roi_input = tf.keras.layers.Input(shape=(None, 4))
    classfier_large = network.fast_rcnn(map_large, roi_input, 8)
    classfier_mid = network.fast_rcnn(map_mid, roi_input, 16)
    classfier_small = network.fast_rcnn(map_small, roi_input, 32)
    model_classfier = tf.keras.models.Model(inputs=[img_input, roi_input],
                                         outputs=[classfier_large, classfier_mid, classfier_small])
    for layer in model_classfier.layers:
        layer._name = layer.name + "_base"
    fpn_net.load_weights('/Network/Servers/lab.cs.uwlax.edu/nfs-homes/zhou2494/Desktop/expirements/fpn_model8.h5', by_name=True)
    model_classfier.load_weights('/Network/Servers/lab.cs.uwlax.edu/nfs-homes/zhou2494/Desktop/expirements/final.h5',by_name=True)
    record=0
    right=0
    for img_info in data.roidb:
        record+=1
        path = os.path.join(cfg.IMAGESET, img_info.get("index") + ".jpg")
        print(img_info.get("index"))
        img = Image.open(path)
        img, box = data_gen.handle_origin_image(img, img_info.get('box'),img_info)
        img = np.array(img)[None]
        xclass_small, xloc_small, xclass_mid, xloc_mid, xclass_large, xloc_large = fpn_net.predict(img)
        rois_large = rpn_to_roi(xclass_large[0, :, :, :], xloc_large[0, :, :, :], 8)
        print("the number of rois is :" + str(len(rois_large)))
        rois_mid =rpn_to_roi(xclass_mid[0, :, :, :],
                                         xloc_mid[0, :, :, :], 16)
        print("the number of rois is :" + str(len(rois_mid)))
        rois_small = rpn_to_roi(xclass_small[0, :, :, :],
                                           xloc_small[0, :, :, :], 32)
        print("the number of rois is :" + str(len(rois_small)))
        rois = np.concatenate([rois_small, rois_large, rois_mid], axis=0)[:, :4]
        print("the number of rois is :" + str(len(rois)))
        rois_expend=np.expand_dims(rois,axis=0)
        label_record = []
        reg_record = []
        cls_confidence=[]
        roi_record=[]
        index_record=[]
        class_large,loc_large, class_mid,loc_mid, class_small,loc_small= model_classfier.predict([img,rois_expend])
        cls_score_large=np.squeeze(class_large)
        loc_reg_large=np.squeeze( loc_large)
        cls_score_mid = np.squeeze(class_mid)
        loc_reg_mid = np.squeeze(loc_mid)
        cls_score_small = np.squeeze(class_small)
        loc_reg_small = np.squeeze(loc_small)
        loc_reg_large=loc_reg_large/cfg.TRAIN.std_scaling
        loc_reg_mid=loc_reg_mid/cfg.TRAIN.std_scaling
        loc_reg_small=loc_reg_small/cfg.TRAIN.std_scaling
        for i in range(cls_score_large.shape[0]):
            w = rois[i][2] - rois[i][0]
            h = rois[i][3] - rois[i][1]
            roi = [rois[i][0] + w / 2, rois[i][1] + h / 2, w, h]
            if np.argmax(cls_score_large[i, :]) != cfg.NUM_CLASSES - 1 and max(cls_score_large[i, :]) > 0.8:
                label_record.append(cls_score_large[i, :])
                index=np.argmax(cls_score_large[i, :])
                index_record.append(index)
                roi_record.append(roi)
                roi_reg=cal_transform(roi,loc_reg_large[i][index*4:index*4+4])
                reg_record.append(roi_reg)
                cls_confidence.append(cls_score_large[i, index])
            if np.argmax(cls_score_mid[i, :]) != cfg.NUM_CLASSES - 1 and max(cls_score_mid[i, :]) > 0.8:
                label_record.append(cls_score_mid[i, :])
                index = np.argmax(cls_score_mid[i, :])
                index_record.append(index)
                roi_record.append(roi)
                roi_reg=cal_transform(roi,loc_reg_mid[i][index*4:index*4+4])
                reg_record.append(roi_reg)
                cls_confidence.append(cls_score_large[i, index])
            if np.argmax(cls_score_small[i, :]) != cfg.NUM_CLASSES - 1 and max(cls_score_small[i, :]) > 0.8:
                label_record.append(cls_score_small[i, :])
                index = np.argmax(cls_score_small[i, :])
                index_record.append(index)
                roi_record.append(roi)
                roi_reg=cal_transform(roi,loc_reg_small[i][index*4:index*4+4])
                reg_record.append(roi_reg)
                cls_confidence.append(cls_score_large[i, index])
        if len(reg_record)==0:
            continue
        reg_record=np.array(reg_record)
        cls_confidence=np.expand_dims(np.array(cls_confidence),axis=1)
        index_record=np.expand_dims(np.array(index_record),axis=1)
        np_im = np.squeeze(img)
        reg_record=np.concatenate((reg_record,cls_confidence,index_record),axis=1)
        gt_box=img_info.get('box')
        for cls_num in range(8):
            index=np.where(np.equal(reg_record[:,5],cls_num))[0]
            name=cfg.CLASSES_NAME[cls_num]
            if len(index)==0:
                continue
            boxes=nms(reg_record[index])
            for roi in boxes:
                np_im = debug.drawbox(np_im, (0, 0, 255), roi, 1,name)
        cv2.imwrite('tst' + img_info.get('index')+ '.png', np_im)
    print(str(right))
    print(str(record))
Exemplo n.º 7
0
def train_frcnn():
    network = resnet()
    img_input = keras.layers.Input(shape=(None, None, 3))
    roi_input = keras.layers.Input(shape=(None, 4))
    fpn_model = network.fpn_net(img_input)
    map_large, map_mid, map_small = network.resnet_50(is_share=True,
                                                      inpt=img_input,
                                                      is_FPN=True)
    xclass_large, xloc_large, xclass_mid, xloc_mid, xclass_small, xloc_small = network.fpn_output(
        img_input)
    classfier_large = network.fast_rcnn(map_large, roi_input, 8)
    classfier_mid = network.fast_rcnn(map_mid, roi_input, 16)
    classfier_small = network.fast_rcnn(map_small, roi_input, 32)
    model_classfier = keras.models.Model(
        inputs=[img_input, roi_input],
        outputs=[classfier_large, classfier_mid, classfier_small])
    for layer in model_classfier.layers:
        layer._name = layer.name + "_base"
    fpn_model.load_weights(
        "/Network/Servers/lab.cs.uwlax.edu/nfs-homes/zhou2494/Desktop/expirements/fpn_model8.h5"
    )
    model_classfier.load_weights(
        '/Network/Servers/lab.cs.uwlax.edu/nfs-homes/zhou2494/Desktop/expirements/fpn_model8.h5',
        by_name=True)
    comb_model = keras.models.Model([img_input, roi_input], [
        xclass_large, xloc_large, xclass_mid, xloc_mid, xclass_small,
        xloc_small, classfier_large, classfier_mid, classfier_small
    ])
    comb_model.compile(optimizer='sgd', loss='mae')
    optimizer = keras.optimizers.SGD(lr=0.01, decay=0.0005, momentum=0.9)
    optimizer_classifier = keras.optimizers.SGD(lr=0.001 / 5,
                                                decay=0.0005,
                                                momentum=0.9)
    fpn_model.compile(optimizer=optimizer,
                      loss=[
                          rpn_loss_cls, rpn_reg_loss, rpn_loss_cls,
                          rpn_reg_loss, rpn_loss_cls, rpn_reg_loss
                      ])

    model_classfier.compile(
        optimizer=optimizer_classifier,
        loss=[cls_loss, reg_loss, cls_loss, reg_loss, cls_loss, reg_loss],
        metrics=['accuracy'])

    comb_model.compile(optimizer='sgd', loss='mae')
    generator = data_generator()
    num_epochs = 5
    epoch_length = generator.step_per_epoch
    data_gene = generator.g
    for epoch in range(num_epochs):
        loss_record = np.zeros((epoch_length, 6))
        batch_num = 0
        progbar = tf.keras.utils.Progbar(epoch_length)
        print('Epoch {}/{}'.format(epoch + 1, num_epochs))
        # first 3 epoch is warm up.
        if epoch == 3:
            backend.set_value(fpn_model.optimizer.lr, 0.001)
            backend.set_value(model_classfier.optimizer.lr, 0.001)
        while True:
            rpn_x, rpn_y, img_info = next(data_gene)
            # loss_rpn = fpn_model.train_on_batch(rpn_x, rpn_y)
            roi_data = np.zeros((8, cfg.MAX_ROIS, 4), dtype=np.float32)
            classfiy_data = np.zeros((8, cfg.MAX_ROIS, cfg.NUM_CLASSES),
                                     dtype=np.float32)
            reg_data = np.zeros((8, cfg.MAX_ROIS, 8 * (cfg.NUM_CLASSES - 1)))
            xclass_small, xloc_small, xclass_mid, xloc_mid, xclass_large, xloc_large = fpn_model.predict_on_batch(
                rpn_x)
            record = []
            avaliabel = []
            for batch_index in range(8):
                rois_large = roi_helper.rpn_to_roi(
                    xclass_large[batch_index, :, :, :],
                    xloc_large[batch_index, :, :, :], 8)
                rois_mid = roi_helper.rpn_to_roi(
                    xclass_mid[batch_index, :, :, :],
                    xloc_mid[batch_index, :, :, :], 16)
                rois_small = roi_helper.rpn_to_roi(
                    xclass_small[batch_index, :, :, :],
                    xloc_small[batch_index, :, :, :], 32)
                rois = np.concatenate([rois_small, rois_large, rois_mid],
                                      axis=0)[:, :4]
                rois = rois.astype(np.float32)
                frcnn_label = roi_helper.match_gt_box(rois,
                                                      img_info[batch_index])
                if frcnn_label is None:
                    record.append(batch_index)
                    continue
                rois, cls_label, reg_label = frcnn_label
                avaliabel.append(batch_index)
                train_label, selected_pos_label = select_sample(cls_label)
                # debug.draw_roi(rois[selected_pos_label], img_info[batch_index],rpn_x[batch_index])
                roi_data[batch_index] = rois[train_label]
                classfiy_data[batch_index] = cls_label[train_label]
                reg_data[batch_index] = reg_label[train_label]
            for batch_index in record:
                index = avaliabel[0]
                roi_data[batch_index] = roi_data[index]
                classfiy_data[batch_index] = classfiy_data[index]
                reg_data[batch_index] = reg_data[index]
            loss_classfiy0 = model_classfier.train_on_batch(
                [rpn_x[:2], roi_data[:2]], [
                    classfiy_data[:2], reg_data[:2], classfiy_data[:2],
                    reg_data[:2], classfiy_data[:2], reg_data[:2]
                ])
            loss_classfiy1 = model_classfier.train_on_batch(
                [rpn_x[2:4], roi_data[2:4]], [
                    classfiy_data[2:4], reg_data[2:4], classfiy_data[2:4],
                    reg_data[2:4], classfiy_data[2:4], reg_data[2:4]
                ])
            loss_classfiy2 = model_classfier.train_on_batch(
                [rpn_x[4:6], roi_data[4:6]], [
                    classfiy_data[4:6], reg_data[4:6], classfiy_data[4:6],
                    reg_data[4:6], classfiy_data[4:6], reg_data[4:6]
                ])
            loss_classfiy3 = model_classfier.train_on_batch(
                [rpn_x[6:8], roi_data[6:8]], [
                    classfiy_data[6:8], reg_data[6:8], classfiy_data[6:8],
                    reg_data[6:8], classfiy_data[6:8], reg_data[6:8]
                ])
            loss_record[batch_num, 0] = loss_classfiy0[0]
            loss_record[batch_num, 1] = loss_classfiy0[1]
            progbar.update(
                batch_num,
                [('rpn', np.mean(loss_record[:batch_num + 1, 0])),
                 ('fast rcnn : ', np.mean(loss_record[:batch_num + 1, 1])),
                 ("average number of objects", len(selected_pos_label))])
            batch_num += 1
            if batch_num >= epoch_length:
                break
    model_classfier.save_weights("final.h5")
    comb_model.save_weights("finalcomb.h5")
Exemplo n.º 8
0
 def __init__(self):
     resnet_base = resnet()
     self.input_layer = keras.layers.Input(shape=(None, None, 3))
     self.feature_map = resnet_base.resnet_50(is_share=True,
                                              inpt=self.input_layer)
     self.rpn_output = resnet_base.rpn_net(self.feature_map)