])

    train_set = videodataset.VideoDataset(rootDir=args.train,
                                          timeDepth=args.timedepth,
                                          transform=train_transform)

    train_loader = data.DataLoader(dataset=train_set,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=1)

    print('total videos: {}; total batches: {}'.format(len(train_set),
                                                       len(train_loader)))

    encoder = network.EncoderCell().cuda()
    binarizer = network.Binarizer().cuda()
    decoder = network.DecoderCell().cuda()

    encoder.eval()
    binarizer.eval()
    decoder.eval()

    # a = 'epoch'
    # b = 4

    encoder.load_state_dict(
        torch.load('checkpoint/encoder_epoch_00000004.pth'))
    binarizer.load_state_dict(
        torch.load('checkpoint/binarizer_epoch_00000004.pth'))
    decoder.load_state_dict(
        torch.load('checkpoint/decoder_epoch_00000004.pth'))
Exemplo n.º 2
0
    def __init__(self,
                 original_path,
                 model_path,
                 codes_path,
                 save_path,
                 decode_only=False,
                 gpu=True):

        self.gpu = gpu

        global encoder

        encoder = network.EncoderCell()

        global binarizer

        binarizer = network.Binarizer()

        global decoder

        decoder = network.DecoderCell()

        if gpu:

            self.encoder = encoder.cuda()
            bianrizer = binarizer.cuda()
            decoder = decoder.cuda()

        encoder = encoder.eval()

        bianrizer = binarizer.eval()

        decoder = decoder.eval()

        self.original = original_path

        self.codes_path = codes_path

        os.system('mkdir -p {}'.format(self.codes_path))

        self.save_path = save_path

        os.system('mkdir -p {}'.format(self.save_path))

        model = model_path + '/encoder.pth'

        if gpu:

            if decode_only == False:
                encoder.load_state_dict(torch.load(model))
                binarizer.load_state_dict(
                    torch.load(model.replace('encoder', 'binarizer')))
            decoder.load_state_dict(
                torch.load(model.replace('encoder', 'decoder')))

        else:

            if decode_only == False:
                encoder.load_state_dict(
                    torch.load(model,
                               map_location=lambda storage, loc: storage))
                binarizer.load_state_dict(
                    torch.load(model.replace('encoder', 'binarizer'),
                               map_location=lambda storage, loc: storage))
            decoder.load_state_dict(
                torch.load(model.replace('encoder', 'decoder'),
                           map_location=lambda storage, loc: storage))
    def ed_process(self,my_object):
        bpp=[]
        code_img = []
        th =self.target
        train_loader = torch.utils.data.DataLoader(self.list_patches,batch_size = self.batch_size,num_workers=2,
                                                   shuffle=False)
        num_batch = len(train_loader)
        encoder = network.EncoderCell(3).eval()
        binarizer = network.Binarizer(canais).eval()
        decoder = network.DecoderCell(canais,3).eval()

        encoder.load_state_dict(torch.load(self.path_model,map_location=lambda storage, loc: storage ) )
        binarizer.load_state_dict(torch.load(self.path_model.replace('encoder', 'binarizer'),map_location=lambda storage, loc: storage ))
        decoder.load_state_dict(torch.load(self.path_model.replace('encoder', 'decoder'),map_location=lambda storage, loc: storage))

        if cuda:
            encoder = encoder.cuda()
            binarizer = binarizer.cuda()
            decoder = decoder.cuda()

        qbits = np.zeros(1)
        list_patches_recons =  np.zeros((self.batch_size*num_batch,self.height,self.width,3),dtype='uint8')
        
        for batch,data in enumerate(train_loader):
            image = data 
            if cuda:
              image = image.cuda()
            
            #assert height % 32 == 0 and width % 32 == 0
          
            with torch.no_grad():  
                encoder_h_1 = ((torch.zeros(self.batch_size, 256, self.height // 4, self.width // 4)),
                                  (torch.zeros(self.batch_size, 256, self.height // 4, self.width // 4)))
                encoder_h_2 = ((torch.zeros(self.batch_size, 512, self.height // 8, self.width // 8)),
                                     (torch.zeros(self.batch_size, 512, self.height // 8, self.width // 8)))
                encoder_h_3 = ((torch.zeros(self.batch_size, 512, self.height // 16, self.width // 16)),
                                     (torch.zeros(self.batch_size, 512, self.height // 16, self.width // 16)))
                decoder_h_1 = ((torch.zeros(self.batch_size, 512, self.height // 16, self.width // 16)),
                                     (torch.zeros(self.batch_size, 512, self.height // 16, self.width // 16)))
                decoder_h_2 = ((torch.zeros(self.batch_size, 512, self.height // 8, self.width // 8)),
                                     (torch.zeros(self.batch_size, 512, self.height // 8, self.width // 8)))
                decoder_h_3 = ((torch.zeros(self.batch_size, 256, self.height // 4, self.width // 4)),
                                     (torch.zeros(self.batch_size, 256, self.height // 4, self.width // 4)))
                decoder_h_4 = ((torch.zeros(self.batch_size, 128, self.height // 2, self.width // 2)),
                                     (torch.zeros(self.batch_size, 128, self.height // 2, self.width // 2)))

            encoder_h_1 = (encoder_h_1[0], encoder_h_1[1])
            encoder_h_2 = (encoder_h_2[0], encoder_h_2[1])
            encoder_h_3 = (encoder_h_3[0], encoder_h_3[1])

            decoder_h_1 = (decoder_h_1[0], decoder_h_1[1])
            decoder_h_2 = (decoder_h_2[0], decoder_h_2[1])
            decoder_h_3 = (decoder_h_3[0], decoder_h_3[1])
            decoder_h_4 = (decoder_h_4[0], decoder_h_4[1])  

            if cuda:
                encoder_h_1 = (encoder_h_1[0].cuda(), encoder_h_1[1].cuda())
                encoder_h_2 = (encoder_h_2[0].cuda(), encoder_h_2[1].cuda())
                encoder_h_3 = (encoder_h_3[0].cuda(), encoder_h_3[1].cuda())

                decoder_h_1 = (decoder_h_1[0].cuda(), decoder_h_1[1].cuda())
                decoder_h_2 = (decoder_h_2[0].cuda(), decoder_h_2[1].cuda())
                decoder_h_3 = (decoder_h_3[0].cuda(), decoder_h_3[1].cuda())
                decoder_h_4 = (decoder_h_4[0].cuda(), decoder_h_4[1].cuda())    

     
           
            im      = torch.zeros(batch_size, 3, self.height, self.width)
            res     = (image - offset).float()
            codes   = []
 
            for iters in range(self.num_max_iter):
                  
                encoded, encoder_h_1, encoder_h_2, encoder_h_3 = encoder(res, encoder_h_1, encoder_h_2, encoder_h_3)
                code = binarizer(encoded)
                output, decoder_h_1, decoder_h_2, decoder_h_3, decoder_h_4 = decoder(code, decoder_h_1, decoder_h_2, decoder_h_3, decoder_h_4)
                im += output.data.cpu()
                res = res - output
                codes.append(code.data.cpu().numpy())
                qbits += (self.height/16*self.width/16 *canais)*self.batch_size 
  
                if self.op_bit_allocation and iters+1>=self.num_min_iter:
                    result =[]
                    for i in range(self.batch_size):
                        patch = im[i]+offset 
                        patch = np.squeeze(patch.numpy().clip(0, 1) * 255.0).astype(np.uint8).transpose(1, 2, 0)
                        list_patches_recons[i+batch*self.batch_size,:,:,:] = patch

                        patch_test = patch
                        patch_test = Image.fromarray(patch_test, mode = self.color_mode)
                        patch_test = patch_test.convert('RGB')

                        patch_ref = (patches[batch*batch_size+i]* 255.0).astype(np.uint8)
                        patch_ref = Image.fromarray(patch_ref, mode = self.color_mode)
                        patch_ref = patch_ref.convert('RGB')

                        result.append(calc_metric(patch_ref,patch_test,'psnr')) 
                    lower = min(result)
                    media = np.mean(result)
                    if media>=th and lower>=th*0.95:
                        print('iteração',iters+1,'PSNR média', media)
                        break

            if not self.op_bit_allocation:
                for i in range(self.batch_size):
                    patch = im[i] + offset 
                    patch = np.squeeze(patch.numpy().clip(0, 1) * 255.0).astype(np.uint8).transpose(1, 2, 0)
                    list_patches_recons[i+batch*self.batch_size,:,:,:] = patch

            codes = np.asarray(codes).flatten()
            if batch==0:
                code_img = codes
            else: 
                code_img = np.concatenate((code_img, codes), axis=0)
            codes=[]

        code_img = list(map(int, code_img))
        latent = list(map(lambda x: x != -1, code_img))
        size_in = bitstring.Bits(latent).length
        compressed = gzip.compress(bitstring.Bits(latent).bytes)
        size_out = bitstring.Bits(compressed).length 
                
        bpp2 = size_out/(512*768)            
        bpp = qbits/(768*512)          
        return list_patches_recons,bpp,bpp2                     
Exemplo n.º 4
0
    def ed_process(self,my_object):
      
        
        bpp=[]
        #for th in self.threshold:
        #for q in range(self.qiters, self.qiters+1):
        th =self.target
        train_loader = torch.utils.data.DataLoader(self.list_patches,batch_size = self.batch_size,num_workers=2,
                                                   shuffle=False)
        num_batch = len(train_loader)

        encoder = network.EncoderCell(1)
        binarizer = network.Binarizer(28)
        decoder = network.DecoderCell(28,1)

        encoder2 = network.EncoderCell(2)
        binarizer2 = network.Binarizer(4)
        decoder2 = network.DecoderCell(4,2)

        encoder.load_state_dict(torch.load(self.path_model,map_location=lambda storage, loc: storage ) )
        binarizer.load_state_dict(torch.load(self.path_model.replace('encoder', 'binarizer'),map_location=lambda storage, loc: storage ))
        decoder.load_state_dict(torch.load(self.path_model.replace('encoder', 'decoder'),map_location=lambda storage, loc: storage))

        encoder2.load_state_dict(torch.load(self.path_model2,map_location=lambda storage, loc: storage ) )
        binarizer2.load_state_dict(torch.load(self.path_model2.replace('encoder', 'binarizer'),map_location=lambda storage, loc: storage ))
        decoder2.load_state_dict(torch.load(self.path_model2.replace('encoder', 'decoder'),map_location=lambda storage, loc: storage))

        if cuda:
            encoder = encoder.cuda()
            binarizer = binarizer.cuda()
            decoder = decoder.cuda()
            encoder2 = encoder2.cuda()
            binarizer2 = binarizer2.cuda()
            decoder2 = decoder2.cuda()
        qbits=np.zeros(1)

        list_patches_recons = np.zeros((self.batch_size*num_batch,self.height,self.width,3),dtype='uint8')

        print('Batch size',self.batch_size,'Número de batches: ',num_batch,', Dimensão patch',self.h,'x',self.w)
        code_img=[]
        code_img2 =[]
        for batch,data in enumerate(train_loader):
            image = data 
            if cuda:
              image = image.cuda()
            codes_final=[]
            #assert height % 32 == 0 and width % 32 == 0
            with torch.no_grad():
                image = Variable(image)
           
                encoder_h_1 = ((torch.zeros(self.batch_size, 256, self.height // 4, self.width // 4)),
                                  (torch.zeros(self.batch_size, 256, self.height // 4, self.width // 4)))
                encoder_h_2 = ((torch.zeros(self.batch_size, 512, self.height // 8, self.width // 8)),
                                     (torch.zeros(self.batch_size, 512, self.height // 8, self.width // 8)))
                encoder_h_3 = ((torch.zeros(self.batch_size, 512, self.height // 16, self.width // 16)),
                                     (torch.zeros(self.batch_size, 512, self.height // 16, self.width // 16)))
                decoder_h_1 = ((torch.zeros(self.batch_size, 512, self.height // 16, self.width // 16)),
                                     (torch.zeros(self.batch_size, 512, self.height // 16, self.width // 16)))
                decoder_h_2 = ((torch.zeros(self.batch_size, 512, self.height // 8, self.width // 8)),
                                     (torch.zeros(self.batch_size, 512, self.height // 8, self.width // 8)))
                decoder_h_3 = ((torch.zeros(self.batch_size, 256, self.height // 4, self.width // 4)),
                                     (torch.zeros(self.batch_size, 256, self.height // 4, self.width // 4)))
                decoder_h_4 = ((torch.zeros(self.batch_size, 128, self.height // 2, self.width // 2)),
                                     (torch.zeros(self.batch_size, 128, self.height // 2, self.width // 2)))

            encoder_h_1 =  (encoder_h_1[0], encoder_h_1[1])
            encoder_h_2 =  (encoder_h_2[0], encoder_h_2[1])
            encoder_h_3 =  (encoder_h_3[0], encoder_h_3[1])

            decoder_h_1 =  (decoder_h_1[0], decoder_h_1[1])
            decoder_h_2 =  (decoder_h_2[0], decoder_h_2[1])
            decoder_h_3 =  (decoder_h_3[0], decoder_h_3[1])
            decoder_h_4 =  (decoder_h_4[0], decoder_h_4[1])  

            encoder_h_1_2 = (encoder_h_1[0], encoder_h_1[1])
            encoder_h_2_2 = (encoder_h_2[0], encoder_h_2[1])
            encoder_h_3_2 = (encoder_h_3[0], encoder_h_3[1])

            decoder_h_1_2 = (decoder_h_1[0], decoder_h_1[1])
            decoder_h_2_2 = (decoder_h_2[0], decoder_h_2[1])
            decoder_h_3_2 = (decoder_h_3[0], decoder_h_3[1])
            decoder_h_4_2 = (decoder_h_4[0], decoder_h_4[1])  

            if cuda:
                encoder_h_1 = (encoder_h_1[0].cuda(), encoder_h_1[1].cuda())
                encoder_h_2 = (encoder_h_2[0].cuda(), encoder_h_2[1].cuda())
                encoder_h_3 = (encoder_h_3[0].cuda(), encoder_h_3[1].cuda())

                decoder_h_1 = (decoder_h_1[0].cuda(), decoder_h_1[1].cuda())
                decoder_h_2 = (decoder_h_2[0].cuda(), decoder_h_2[1].cuda())
                decoder_h_3 = (decoder_h_3[0].cuda(), decoder_h_3[1].cuda())
                decoder_h_4 = (decoder_h_4[0].cuda(), decoder_h_4[1].cuda())    

                encoder_h_1_2 = (encoder_h_1[0].cuda(), encoder_h_1[1].cuda())
                encoder_h_2_2 = (encoder_h_2[0].cuda(), encoder_h_2[1].cuda())
                encoder_h_3_2 = (encoder_h_3[0].cuda(), encoder_h_3[1].cuda())

                decoder_h_1_2 = (decoder_h_1[0].cuda(), decoder_h_1[1].cuda())
                decoder_h_2_2 = (decoder_h_2[0].cuda(), decoder_h_2[1].cuda())
                decoder_h_3_2 = (decoder_h_3[0].cuda(), decoder_h_3[1].cuda())
                decoder_h_4_2 = (decoder_h_4[0].cuda(), decoder_h_4[1].cuda())    

            image = image - 0.5
            image = image.float() 

            im  = torch.zeros(batch_size, 1, self.height, self.width) + 0.5
            im2 = torch.zeros(batch_size, 2, self.height, self.width) + 0.5

            res = torch.zeros(batch_size, 1, self.height, self.width,dtype=torch.float).cuda()
    
            res[:,0,:,:] = image[:,0,:,:]
            res2 = image[:,1:,:,:]

            result = 0
            codes  = []
            codes2 = []

            for iters in range(self.qiters):

                encoded, encoder_h_1, encoder_h_2, encoder_h_3 = encoder(res, encoder_h_1, encoder_h_2, encoder_h_3)
                code = binarizer(encoded)
                output, decoder_h_1, decoder_h_2, decoder_h_3, decoder_h_4 = decoder(code, decoder_h_1, decoder_h_2, decoder_h_3, decoder_h_4)

                encoded2, encoder_h_1_2, encoder_h_2_2, encoder_h_3_2 = encoder2(res2, encoder_h_1_2, encoder_h_2_2, encoder_h_3_2)
                code2 = binarizer2(encoded2)
                output2, decoder_h_1_2, decoder_h_2_2, decoder_h_3_2, decoder_h_4_2 = decoder2(code2, decoder_h_1_2, decoder_h_2_2, decoder_h_3_2, decoder_h_4_2)

                im += output.data.cpu()
                res = res - output
                codes.append(code.data.cpu().numpy())

                im2 += output2.data.cpu()
                res2 = res2 - output2
                codes2.append(code2.data.cpu().numpy())
                
                qbits+= (self.height/16*self.width/16 * 32)*self.batch_size 
                #print('code.shape',code.shape,'code2.shape', code2.shape)
                for i in range(self.batch_size):
                    
                    im_new = torch.cat((im, im2), 1)
                    #print(im_new.shape)
                    img = np.squeeze(im_new[i].numpy().clip(0, 1) * 255.0).astype(np.uint8).transpose(1, 2, 0)
                    list_patches_recons[i+batch*self.batch_size,:,:,:] = img
                
                if self.op_bit_allocation and iters+1>=self.min_iters:
                    result =[]
                    for i in range(self.batch_size):
                        patch_test = np.squeeze(im[i].numpy().clip(0, 1) * 255.0).astype(np.uint8).transpose(1, 2, 0)
                        #patch_test=np.squeeze(im.numpy().clip(0, 1) * 255.0).astype(np.uint8).transpose(1, 2, 0)
                        patch_test = Image.fromarray(patch_test, mode = self.color_mode)
                        patch_test = patch_test.convert('RGB')

                        patch_ref = (patches[batch*batch_size+i]* 255.0).astype(np.uint8)
                        #patch_ref  = Image.fromarray(patch_ref, mode='RGB')
                        patch_ref = Image.fromarray(patch_ref, mode = self.color_mode)
                        patch_ref = patch_ref.convert('RGB')

                        result.append(calc_metric(patch_ref,patch_test,'psnr')) 
                    lower = min(result)
                    media = np.mean(result)
                    if media>=th and lower>=th*0.90:
                        print('iteração',iters+1,'PSNR médio', media)
                        break

            bpp   = qbits/(768*512)   
             
            codes1  = np.asarray(codes).flatten()
            codes2  =  np.asarray(codes2).flatten()

            codes12 = np.concatenate((codes1, codes2), axis=0)
            if batch==0:
                code_img = codes12
                code_img1  = codes1
                code_img2 = codes2
            else: 
                code_img = np.concatenate((code_img, codes12), axis=0)                                
                code_img1 = np.concatenate((code_img1, codes1), axis=0)                                
                code_img2 = np.concatenate((code_img2, codes2), axis=0)                                

                 
        
        code_img1 = list(map(int, code_img1))
        latent1 = list(map(lambda x: x != -1, code_img1))
        size_in1 = bitstring.Bits(latent1).length
        compressed1 = gzip.compress(bitstring.Bits(latent1).bytes)
        size_out1 = bitstring.Bits(compressed1).length 
        #print('entrada (bits)', size_in,'saída(bits)', size_out, 'Data compression ratio',size_in/size_out)
        #bpp2 = size_out/(512*768)

        code_img2 = list(map(int, code_img2))
        latent2 = list(map(lambda x: x != -1, code_img2))
        size_in2 = bitstring.Bits(latent2).length
        compressed2 = gzip.compress(bitstring.Bits(latent2).bytes)
        size_out2 = bitstring.Bits(compressed2).length 
        print('entrada (bits)', size_in1+size_in1,'saída(bits)', size_out1+size_out2, 'Data compression ratio',(size_in1+size_in2)/(size_out1 + size_out2))
        bpp2 = (size_out1+size_out2)/(512*768)
        return list_patches_recons,bpp,bpp2
Exemplo n.º 5
0
                    help='unroll iterations')
args = parser.parse_args()

image = imread(args.input, mode='RGB')
image = torch.from_numpy(
    np.expand_dims(np.transpose(image.astype(np.float32) / 255.0, (2, 0, 1)),
                   0))
batch_size, input_channels, height, width = image.size()
assert height % 32 == 0 and width % 32 == 0

image = Variable(image, volatile=True)

import network

encoder = network.EncoderCell()
binarizer = network.Binarizer()
decoder = network.DecoderCell()

encoder.eval()
binarizer.eval()
decoder.eval()

encoder.load_state_dict(torch.load(args.model))
binarizer.load_state_dict(
    torch.load(args.model.replace('encoder', 'binarizer')))
decoder.load_state_dict(torch.load(args.model.replace('encoder', 'decoder')))

encoder_h_1 = (Variable(torch.zeros(batch_size, 256, height // 4, width // 4),
                        volatile=True),
               Variable(torch.zeros(batch_size, 256, height // 4, width // 4),
                        volatile=True))