Exemplo n.º 1
0
def backward(data):
    x = tf.placeholder(tf.float32, (BATCH_SIZE, network.IMAGE_SIZE, network.IMAGE_SIZE, network.IMAGE_CHANNEL))
    y = network.forward(x, False, KEEP_PROB, REGULARIZER)
    y_ = tf.placeholder(tf.float32, (None, network.OUTPUT_NODE))

    loss1 = tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_)
    loss2 = tf.reduce_mean(loss1)
    accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)), tf.float32))

    saver=tf.train.Saver(max_to_keep=1)

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        model = tf.train.latest_checkpoint('mnist_Complex/')
        saver.restore(sess, model)

        accu_sum=0
        loss_sum=0

        for i in range(0,EPOCH):
            xf, yf = data.next_batch(BATCH_SIZE)
            xf = mnist.mnist_fft(xf, BATCH_SIZE)
            accu, los = sess.run([accuracy, loss2], feed_dict={x: xf, y_: yf})
            accu_sum+=accu
            loss_sum+=los

        accu_mean=accu_sum/EPOCH
        loss_mean=loss_sum/EPOCH
        print('loss on test: ',loss_mean )
        print('accuracy on test: ',accu_mean)
Exemplo n.º 2
0
def test(data_set):
    x = tf.placeholder(dtype=tf.float32,
                       shape=(None, network.IMAGE_RAW, network.IMAGE_COL,
                              network.CHANNEL))
    y = network.forward(x, False, 0.1, 0.1)
    y_ = tf.placeholder(dtype=tf.float32, shape=(None, network.OUTPUT_SIZE))

    losses = tf.losses.softmax_cross_entropy(onehot_labels=y_, logits=y)
    loss = tf.reduce_mean(losses)
    correct = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
    saver = tf.train.Saver()

    with tf.Session() as sess:
        init = tf.global_variables_initializer()
        sess.run(init)

        xs, ys = getData.get_all(data_set)
        xs = np.reshape(
            xs, (-1, network.IMAGE_RAW, network.IMAGE_COL, network.CHANNEL))

        model = tf.train.latest_checkpoint('ckpt_person/')
        saver.restore(sess, model)

        lo, accu = sess.run([loss, accuracy], feed_dict={x: xs, y_: ys})

        print("loss: ", lo)
        print("accuracy: ", accu)
def train(train_set):
    x = tf.placeholder(tf.float32,
                       shape=(None, network.IMAGE_RAW, network.IMAGE_COL,
                              network.CHANNEL))
    y_ = tf.placeholder(tf.float32, shape=(None, network.OUTPUT_SIZE))
    y = network.forward(x, True, REGULARIZER, KEEP_PROB)
    loss = tf.losses.softmax_cross_entropy(logits=y, onehot_labels=y_)
    losses = tf.reduce_mean(loss)
    losses += tf.add_n(tf.get_collection('losses'))
    correct = tf.equal(tf.argmax(y_, 1), tf.argmax(y, 1))  # argmax:1(按行算,得到列)
    accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

    train = tf.train.AdamOptimizer(LEARNING_RATE).minimize(losses)

    saver = tf.train.Saver(max_to_keep=1)

    with tf.Session() as sess:
        init = tf.global_variables_initializer()
        sess.run(init)

        accu1 = 0
        accu2 = 0

        # 记录要绘图的变量
        x_p = [i for i in range(1, EPOCH + 1)]
        y_loss = [i for i in range(1, EPOCH + 1)]
        y_accu = [i for i in range(1, EPOCH + 1)]

        for i in range(1, EPOCH + 1):
            x_train, y_train = getData.get_batch(train_set, BATCH_SIZE)
            x_train = np.reshape(x_train, (BATCH_SIZE, network.IMAGE_RAW,
                                           network.IMAGE_COL, network.CHANNEL))

            _, loss_batch, accuracy_batch = sess.run([train, losses, accuracy],
                                                     feed_dict={
                                                         x: x_train,
                                                         y_: y_train
                                                     })

            y_loss[i - 1] = loss_batch
            y_accu[i - 1] = accuracy_batch
            if i > 100 and accu1 > 0.4 and accu2 > 0.4 and accuracy_batch > 0.4:
                saver.save(sess, 'ckpt_person/my_first.ckpt')

            accu1 = accu2
            accu2 = accuracy_batch

            print("epoch:", i)
            print("loss_batch:", loss_batch)
            print("accuracy_batch:", accuracy_batch)
            print(".....................................")

    print(y_loss)
    print(y_accu)
    plt.figure()
    plt.plot(x_p[0:len(x_p):4], y_loss[0:len(y_loss):4])
    plt.figure()
    plt.plot(x_p[0:len(x_p):4], y_accu[0:len(y_loss):4])
    plt.show()
Exemplo n.º 4
0
def simple_test(test_img):
    if(len(test_img) == 0):
        x_test = cv2.imread(args.TEST_IMG, cv2.IMREAD_GRAYSCALE)
    else:
        x_test = test_img
    img_h = x_test.shape[0]
    img_w = x_test.shape[1]

    if(img_h != 28 or img_w != 28):
        x_test = cv2.resize(x_test, (28, 28), interpolation = cv2.INTER_NEAREST)

    img_cahnnels = 1

    x_test = x_test.reshape(1, img_h, img_w, img_cahnnels).astype(np.float32)
    x_test/=255.

    n_features = x_test.shape[-1]

    X = network.get_placeholder_X(img_h, img_w, n_features)

    _, predictions = network.forward(X, is_training = False)

    print("x_test.shape = ", x_test.shape)

    saver = tf.train.Saver()

    with tf.Session() as sess:
        # from train_dir search the latest model
        ckpt = tf.train.get_checkpoint_state(args.TRAIN_DIR)
        if ckpt and ckpt.model_checkpoint_path:
            # load trained model
            saver.restore(sess, ckpt.model_checkpoint_path)
            predict_value = sess.run(predictions, feed_dict = {X:x_test})
            print("The predicted value of the input image is %d" %(np.argmax(predict_value)))
        else:
            print("No checkpoint file found")
Exemplo n.º 5
0
n_labels = y_train.shape[-1]

print("x_train.shape = ", x_train.shape)
print("y_train.shape = ", y_train.shape)
print("x_val.shape = ", x_val.shape)
print("y_val.shape = ", y_val.shape)

TRAIN_EPOCHS = args.TRAIN_EPOCHS
BATCH_SIZES = args.BATCH_SIZES
LEARNING_RATE = args.LEARNING_RATE
TOTAL_BATCHES = int(n_examples / BATCH_SIZES + 0.5)
DISPLAY_EPOCH = args.DISPLAY_EPOCH

X = network.get_placeholder_X(img_h, img_w, n_features)
Y = network.get_placeholder_Y(n_labels)
outputs, predictions = network.forward(X, is_training=True)
loss, train_op = network.train(LEARNING_RATE, outputs, Y)
correct_prediction, acc = network.accuracy(predictions, Y)
saver = network.save()

logs_path = args.LOG_DIR
tf.summary.scalar("loss", loss)
tf.summary.scalar("accuracy", acc)
merged_summary_op = tf.summary.merge_all()

print("\nStart Training!!!\n")

with tf.Session() as sess:
    sess.run(
        [tf.global_variables_initializer(),
         tf.local_variables_initializer()])
 def test_forward(self):
     network = nw.init_network()
     x = np.array([1.0, 0.5])
     y = nw.forward(network, x)
     self.assertEqual(y[0], 0.3168270764110298)
     self.assertEqual(y[1], 0.6962790898619668)
Exemplo n.º 7
0
def backward(data):
    x = tf.placeholder(tf.float32, (BATCH_SIZE, network.IMAGE_SIZE,
                                    network.IMAGE_SIZE, network.IMAGE_CHANNEL))
    y = network.forward(x, True, KEEP_PROB, REGULARIZER)
    y_ = tf.placeholder(tf.float32, (None, network.OUTPUT_NODE))

    loss1 = tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_)
    loss2 = tf.reduce_mean(loss1)
    loss3 = loss2 + tf.add_n(tf.get_collection('losses'))

    accuracy = tf.reduce_mean(
        tf.cast(tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)), tf.float32))

    opimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(loss3)

    saver = tf.train.Saver(max_to_keep=1)

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        accu1 = 0
        accu2 = 0

        # 记录要绘图的变量
        x_p = [i for i in range(1, EPOCH + 1)]
        y_loss = [i for i in range(1, EPOCH + 1)]
        y_accu = [i for i in range(1, EPOCH + 1)]

        for i in range(1, EPOCH + 1):
            xf, yf = data.next_batch(BATCH_SIZE)

            xf = mnist.mnist_fft(xf, BATCH_SIZE)

            _, accu, los = sess.run([opimizer, accuracy, loss3],
                                    feed_dict={
                                        x: xf,
                                        y_: yf
                                    })

            y_loss[i - 1] = los
            y_accu[i - 1] = accu

            if accu1 > 0.75 and accu2 > 0.75 and accu > 0.75:
                saver.save(sess,
                           'mnist_Complex/mnist_Complex.ckpt',
                           write_meta_graph=False)

            accu1 = accu2
            accu2 = accu

            print('Epoch: ', i)
            print('loss on batch: ', los)
            print('accuracy on batch: ', accu)
            print('.......................................')

    print(y_loss)
    print(y_accu)
    plt.figure()
    plt.plot(x_p[0:len(x_p):4], y_loss[0:len(y_loss):4])
    plt.figure()
    plt.plot(x_p[0:len(x_p):4], y_accu[0:len(y_loss):4])
    plt.show()
Exemplo n.º 8
0
for i in range(0, num):
    number = Y_[i]
    index = i * 10 + number
    Y[index] = 1

X = X_ / 255.0

X = X.reshape((num, 28 * 28))
Y = Y.reshape((num, 10))

X = X.T
Y = Y.T

#print(Image(X[1]).print())

print(X.shape, " X shape")
print(Y.shape, " Y shape")

sizes = n.layer_sizes(X, Y)
print(sizes, " Layer sizes")

parameters = n.initialize_parameters(*sizes)

for i in range(0, 1000):

    A2, cache = n.forward(X, parameters)
    cost = n.compute_cost(A2, Y, parameters)
    grads = n.backward(parameters, cache, X, Y)
    parameters = n.update_parameters(parameters, grads, learning_rate)
    print(cost)