def train(self, args): with open(args.train_list, 'r') as train_list_file: self.train_list = [line.strip() for line in train_list_file.readlines()] self.eval_file = args.eval_file self.num_train_sentences = args.num_train_sentences self.batch_size = args.batch_size self.lr = args.lr self.max_epoch = args.max_epoch self.model_path = args.model_path self.log_path = args.log_path self.fig_path = args.fig_path self.eval_plot_num = args.eval_plot_num self.eval_steps = args.eval_steps self.resume_model = args.resume_model self.wav_path = args.wav_path self.train_wav_path = args.train_wav_path self.tool_path = args.tool_path # create a training dataset and an evaluation dataset trainSet = TrainingDataset(self.train_list, frame_size=self.frame_size, frame_shift=self.frame_shift) evalSet = EvalDataset(self.eval_file, self.num_test_sentences) # trainSet = evalSet # create data loaders for training and evaluation train_loader = DataLoader(trainSet, batch_size=self.batch_size, shuffle=True, num_workers=16, collate_fn=TrainCollate()) eval_loader = DataLoader(evalSet, batch_size=1, shuffle=False, num_workers=4, collate_fn=EvalCollate()) # create a network print('model', self.model_name) net = Net(device=self.device, L=self.frame_size, width=self.width) # net = torch.nn.DataParallel(net) net.to(self.device) print('Number of learnable parameters: %d' % numParams(net)) print(net) criterion = mse_loss() criterion1 = stftm_loss(device=self.device) optimizer = torch.optim.Adam(net.parameters(), lr=self.lr) self.lr_list = [0.0002] * 3 + [0.0001] * 6 + [0.00005] * 3 + [0.00001] * 3 if self.resume_model: print('Resume model from "%s"' % self.resume_model) checkpoint = Checkpoint() checkpoint.load(self.resume_model) start_epoch = checkpoint.start_epoch start_iter = checkpoint.start_iter best_loss = checkpoint.best_loss net.load_state_dict(checkpoint.state_dict) optimizer.load_state_dict(checkpoint.optimizer) else: print('Training from scratch.') start_epoch = 0 start_iter = 0 best_loss = np.inf num_train_batches = self.num_train_sentences // self.batch_size total_train_batch = self.max_epoch * num_train_batches print('num_train_sentences', self.num_train_sentences) print('batches_per_epoch', num_train_batches) print('total_train_batch', total_train_batch) print('batch_size', self.batch_size) print('model_name', self.model_name) batch_timings = 0. counter = int(start_epoch * num_train_batches + start_iter) counter1 = 0 print('counter', counter) ttime = 0. cnt = 0. iteration = 0 print('best_loss', best_loss) for epoch in range(start_epoch, self.max_epoch): accu_train_loss = 0.0 net.train() for param_group in optimizer.param_groups: param_group['lr'] = self.lr_list[epoch] start = timeit.default_timer() for i, (features, labels, nframes, feat_size, label_size, get_filename) in enumerate( train_loader): # features:torch.Size([4, 1, 250, 512]) iteration += 1 labels_cpu = labels i += start_iter features, labels = features.to(self.device), labels.to(self.device) # torch.Size([4, 1, 250, 512]) loss_mask = compLossMask(labels, nframes=nframes) # forward + backward + optimize optimizer.zero_grad() outputs = net(features) # torch.Size([4, 1, 64256]) feature_maker = Fbank(sample_rate=16000, n_fft=400, n_mels=40) loss_fbank = 0 for t in range(len(get_filename)): reader = h5py.File(get_filename[t], 'r') feature_asr = reader['noisy_raw'][:] label_asr = reader['clean_raw'][:] feat_asr_size = int(feat_size[t][0].item()) label_asr_size = int(label_size[t][0].item()) output_asr = self.train_asr_forward(feature_asr, net) est_output_asr = output_asr[:feat_asr_size] ideal_labels_asr = label_asr # 保存train的wav est_path = os.path.join(self.train_wav_path, '{}_est.wav'.format(t + 1)) ideal_path = os.path.join(self.train_wav_path, '{}_ideal.wav'.format(t + 1)) sf.write(est_path, normalize_wav(est_output_asr)[0], self.srate) sf.write(ideal_path, normalize_wav(ideal_labels_asr)[0], self.srate) # read wav est_sig = sb.dataio.dataio.read_audio(est_path).unsqueeze(axis=0).to(self.device) ideal_sig = sb.dataio.dataio.read_audio(ideal_path).unsqueeze(axis=0).to(self.device) est_sig_feats = feature_maker(est_sig) ideal_sig_feats = feature_maker(ideal_sig) # fbank_loss loss_fbank += F.mse_loss(est_sig_feats, ideal_sig_feats, True) loss_fbank /= 100 * len(get_filename) # print(loss_fbank) # loss_fbank = 1 / (1 + math.exp(loss_fbank)) outputs = outputs[:, :, :labels.shape[-1]] loss1 = criterion(outputs, labels, loss_mask, nframes) loss2 = criterion1(outputs, labels, loss_mask, nframes) # print(loss1) # print(loss2) # loss = 0.8 * loss1 + 0.2 * loss2 loss = 0.4 * loss1 + 0.1 * loss2 + 0.5 * loss_fbank loss.backward() optimizer.step() # calculate losses running_loss = loss.data.item() accu_train_loss += running_loss # train-loss show summary.add_scalar('Train Loss', accu_train_loss, iteration) cnt += 1. counter += 1 counter1 += 1 del loss, loss_fbank, loss1, loss2, outputs, loss_mask, features, labels end = timeit.default_timer() curr_time = end - start ttime += curr_time mtime = ttime / counter1 print( 'iter = {}/{}, epoch = {}/{}, loss = {:.5f}, time/batch = {:.5f}, mtime/batch = {:.5f}'.format( i + 1, num_train_batches, epoch + 1, self.max_epoch, running_loss, curr_time, mtime)) start = timeit.default_timer() if (i + 1) % self.eval_steps == 0: start = timeit.default_timer() avg_train_loss = accu_train_loss / cnt avg_eval_loss = self.validate(net, eval_loader, iteration) net.train() print('Epoch [%d/%d], Iter [%d/%d] ( TrainLoss: %.4f | EvalLoss: %.4f )' % ( epoch + 1, self.max_epoch, i + 1, self.num_train_sentences // self.batch_size, avg_train_loss, avg_eval_loss)) is_best = True if avg_eval_loss < best_loss else False best_loss = avg_eval_loss if is_best else best_loss checkpoint = Checkpoint(epoch, i, avg_train_loss, avg_eval_loss, best_loss, net.state_dict(), optimizer.state_dict()) model_name = self.model_name + '_latest.model' best_model = self.model_name + '_best.model' checkpoint.save(is_best, os.path.join(self.model_path, model_name), os.path.join(self.model_path, best_model)) logging(self.log_path, self.model_name + '_loss_log.txt', checkpoint, self.eval_steps) # metric_logging(self.log_path, self.model_name +'_metric_log.txt', epoch+1, [avg_st, avg_sn, avg_pe]) accu_train_loss = 0.0 cnt = 0. net.train() if (i + 1) % num_train_batches == 0: break avg_st, avg_sn, avg_pe = self.validate_with_metrics(net, eval_loader) net.train() print('#' * 50) print('') print('After {} epoch the performance on validation score is a s follows:'.format(epoch + 1)) print('') print('STOI: {:.4f}'.format(avg_st)) print('SNR: {:.4f}'.format(avg_sn)) print('PESQ: {:.4f}'.format(avg_pe)) for param_group in optimizer.param_groups: print('learning_rate', param_group['lr']) print('') print('#' * 50) checkpoint = Checkpoint(epoch, 0, None, None, best_loss, net.state_dict(), optimizer.state_dict()) checkpoint.save(False, os.path.join(self.model_path, self.model_name + '-{}.model'.format(epoch + 1)), os.path.join(self.model_path, best_model)) metric_logging(self.log_path, self.model_name + '_metric_log.txt', epoch, [avg_st, avg_sn, avg_pe]) start_iter = 0.
def test(self, args): with open(args.test_list, 'r') as test_list_file: self.test_list = [line.strip() for line in test_list_file.readlines()] self.model_name = args.model_name self.model_file = args.model_file self.test_mixture_path = args.test_mixture_path self.prediction_path = args.prediction_path # create a network print('model', self.model_name) net = Net(device=self.device, L=self.frame_size, width=self.width) # net = torch.nn.DataParallel(net) net.to(self.device) print('Number of learnable parameters: %d' % numParams(net)) print(net) # loss and optimizer criterion = mse_loss() net.eval() print('Load model from "%s"' % self.model_file) checkpoint = Checkpoint() checkpoint.load(self.model_file) net.load_state_dict(checkpoint.state_dict) with torch.no_grad(): for i in range(len(self.test_list)): # read the mixture for resynthesis filename_input = self.test_list[i].split('/')[-1] start1 = timeit.default_timer() print('{}/{}, Started working on {}.'.format(i + 1, len(self.test_list), self.test_list[i])) print('') filename_mix = filename_input.replace('.samp', '_mix.dat') filename_s_ideal = filename_input.replace('.samp', '_s_ideal.dat') filename_s_est = filename_input.replace('.samp', '_s_est.dat') # print(filename_mix) # sys.exit() f_mix = h5py.File(os.path.join(self.test_mixture_path, filename_mix), 'r') f_s_ideal = h5py.File(os.path.join(self.prediction_path, filename_s_ideal), 'w') f_s_est = h5py.File(os.path.join(self.prediction_path, filename_s_est), 'w') # create a test dataset testSet = EvalDataset(os.path.join(self.test_mixture_path, self.test_list[i]), self.num_test_sentences) # create a data loader for test test_loader = DataLoader(testSet, batch_size=1, shuffle=False, num_workers=2, collate_fn=EvalCollate()) # print '\n[%d/%d] Predict on %s' % (i+1, len(self.test_list), self.test_list[i]) accu_test_loss = 0.0 accu_test_nframes = 0 ttime = 0. mtime = 0. cnt = 0. for k, (mix_raw, cln_raw) in enumerate(test_loader): start = timeit.default_timer() est_s = self.eval_forward(mix_raw, net) est_s = est_s[:mix_raw.size] mix = f_mix[str(k)][:] ideal_s = cln_raw f_s_ideal.create_dataset(str(k), data=ideal_s.astype(np.float32), chunks=True) f_s_est.create_dataset(str(k), data=est_s.astype(np.float32), chunks=True) # compute eval_loss test_loss = np.mean((est_s - ideal_s) ** 2) accu_test_loss += test_loss cnt += 1 end = timeit.default_timer() curr_time = end - start ttime += curr_time mtime = ttime / cnt mtime = (mtime * (k) + (end - start)) / (k + 1) print('{}/{}, test_loss = {:.4f}, time/utterance = {:.4f}, ' 'mtime/utternace = {:.4f}'.format(k + 1, self.num_test_sentences, test_loss, curr_time, mtime)) avg_test_loss = accu_test_loss / cnt # bar.update(k,test_loss=avg_test_loss) # bar.finish() end1 = timeit.default_timer() print('********** Finisehe working on {}. time taken = {:.4f} **********'.format(filename_input, end1 - start1)) print('') f_mix.close() f_s_est.close() f_s_ideal.close()
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) train_dataset = MNIST(root="./mnist", download=True, transform=train_transform) test_dataset = MNIST(root="./mnist", train=False, download=True, transform=test_transform) train_loader = data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = data.DataLoader(test_dataset, batch_size=64) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net = Net() if torch.cuda.device_count() > 1: print(f"Using {torch.cuda.device_count()} GPUs...") net = nn.DataParallel(net) net.to(device) loss_fn = nn.CrossEntropyLoss() lr = 0.003 optimizer = optim.Adam(net.parameters(), weight_decay=1e-6, lr=lr) scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.95) # writer = SummaryWriter() def compute_confusion_matrix(init_cm, y_true, y_pred): for i in range(len(y_true)): init_cm[y_true[i]][y_pred[i]] += 1 def train(epoch): net.train()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device_ids = os.environ['CUDA_VISIBLE_DEVICES'].split(',') device_ids = [int(device_id) for device_id in device_ids] print('GPU configuration:', device, device_ids) # # device = torch.device('cuda') # # encoder = NodeEncoder().to(device) encoder = resnet18(pretrained=True) encoder.fc = torch.nn.Linear(512, 512) propagator = GraphPropagator().to(device) gencoder = GraphEncoder().to(device) model = Net(encoder, propagator, gencoder) # model = torch.nn.DataParallel(model, device_ids=device_ids).to(device) # clf = torch.nn.Linear(256, 2000) # clf = torch.nn.DataParallel(clf, device_ids=device_ids).to(device) model = model.to(device) clf = torch.nn.Linear(256, 2000).to(device) criterion = torch.nn.CrossEntropyLoss() # # criterion = OnlineTripletLoss(2.0, SemihardNegativeTripletSelector(2.0)) # print("Net done!") train_dataset = MinutiaeDataset(im_dir, min_dir, 'train') # # sampler = BalancedBatchSampler(dataset.labels, n_classes=10, n_samples=5) # # train_loader = DataLoader(dataset, num_workers=10, batch_sampler=sampler) train_loader = DataLoader(train_dataset, batch_size=64, shuffle=False, num_workers=10)
def train(self, args): with open(args.train_list, 'r') as train_list_file: self.train_list = [ line.strip() for line in train_list_file.readlines() ] self.eval_file = args.eval_file self.num_train_sentences = args.num_train_sentences self.batch_size = args.batch_size self.lr = args.lr self.max_epoch = args.max_epoch self.model_path = args.model_path self.log_path = args.log_path self.fig_path = args.fig_path self.eval_plot_num = args.eval_plot_num self.eval_steps = args.eval_steps self.resume_model = args.resume_model self.wav_path = args.wav_path self.tool_path = args.tool_path # create a training dataset and an evaluation dataset trainSet = TrainingDataset(self.train_list, frame_size=self.frame_size, frame_shift=self.frame_shift) evalSet = EvalDataset(self.eval_file, self.num_test_sentences) #trainSet = evalSet # create data loaders for training and evaluation train_loader = DataLoader(trainSet, batch_size=self.batch_size, shuffle=True, num_workers=16, collate_fn=TrainCollate()) eval_loader = DataLoader(evalSet, batch_size=1, shuffle=False, num_workers=4, collate_fn=EvalCollate()) # create a network print('model', self.model_name) net = Net(device=self.device, L=self.frame_size, width=self.width) #net = torch.nn.DataParallel(net) net.to(self.device) print('Number of learnable parameters: %d' % numParams(net)) print(net) criterion = mse_loss() criterion1 = stftm_loss(device=self.device) optimizer = torch.optim.Adam(net.parameters(), lr=self.lr) self.lr_list = [0.0002] * 3 + [0.0001] * 6 + [0.00005] * 3 + [0.00001 ] * 3 if self.resume_model: print('Resume model from "%s"' % self.resume_model) checkpoint = Checkpoint() checkpoint.load(self.resume_model) start_epoch = checkpoint.start_epoch start_iter = checkpoint.start_iter best_loss = checkpoint.best_loss net.load_state_dict(checkpoint.state_dict) optimizer.load_state_dict(checkpoint.optimizer) else: print('Training from scratch.') start_epoch = 0 start_iter = 0 best_loss = np.inf num_train_batches = self.num_train_sentences // self.batch_size total_train_batch = self.max_epoch * num_train_batches print('num_train_sentences', self.num_train_sentences) print('batches_per_epoch', num_train_batches) print('total_train_batch', total_train_batch) print('batch_size', self.batch_size) print('model_name', self.model_name) batch_timings = 0. counter = int(start_epoch * num_train_batches + start_iter) counter1 = 0 print('counter', counter) ttime = 0. cnt = 0. print('best_loss', best_loss) for epoch in range(start_epoch, self.max_epoch): accu_train_loss = 0.0 net.train() for param_group in optimizer.param_groups: param_group['lr'] = self.lr_list[epoch] start = timeit.default_timer() for i, (features, labels, nframes) in enumerate(train_loader): i += start_iter features, labels = features.to(self.device), labels.to( self.device) loss_mask = compLossMask(labels, nframes=nframes) # forward + backward + optimize optimizer.zero_grad() outputs = net(features) outputs = outputs[:, :, :labels.shape[-1]] loss1 = criterion(outputs, labels, loss_mask, nframes) loss2 = criterion1(outputs, labels, loss_mask, nframes) loss = 0.8 * loss1 + 0.2 * loss2 loss.backward() optimizer.step() # calculate losses running_loss = loss.data.item() accu_train_loss += running_loss cnt += 1. counter += 1 counter1 += 1 del loss, loss1, loss2, outputs, loss_mask, features, labels end = timeit.default_timer() curr_time = end - start ttime += curr_time mtime = ttime / counter1 print( 'iter = {}/{}, epoch = {}/{}, loss = {:.5f}, time/batch = {:.5f}, mtime/batch = {:.5f}' .format(i + 1, num_train_batches, epoch + 1, self.max_epoch, running_loss, curr_time, mtime)) start = timeit.default_timer() if (i + 1) % self.eval_steps == 0: start = timeit.default_timer() avg_train_loss = accu_train_loss / cnt avg_eval_loss = self.validate(net, eval_loader) net.train() print( 'Epoch [%d/%d], Iter [%d/%d] ( TrainLoss: %.4f | EvalLoss: %.4f )' % (epoch + 1, self.max_epoch, i + 1, self.num_train_sentences // self.batch_size, avg_train_loss, avg_eval_loss)) is_best = True if avg_eval_loss < best_loss else False best_loss = avg_eval_loss if is_best else best_loss checkpoint = Checkpoint(epoch, i, avg_train_loss, avg_eval_loss, best_loss, net.state_dict(), optimizer.state_dict()) model_name = self.model_name + '_latest.model' best_model = self.model_name + '_best.model' checkpoint.save(is_best, os.path.join(self.model_path, model_name), os.path.join(self.model_path, best_model)) logging(self.log_path, self.model_name + '_loss_log.txt', checkpoint, self.eval_steps) #metric_logging(self.log_path, self.model_name +'_metric_log.txt', epoch+1, [avg_st, avg_sn, avg_pe]) accu_train_loss = 0.0 cnt = 0. net.train() if (i + 1) % num_train_batches == 0: break avg_st, avg_sn, avg_pe = self.validate_with_metrics( net, eval_loader) net.train() print('#' * 50) print('') print( 'After {} epoch the performance on validation score is a s follows:' .format(epoch + 1)) print('') print('STOI: {:.4f}'.format(avg_st)) print('SNR: {:.4f}'.format(avg_sn)) print('PESQ: {:.4f}'.format(avg_pe)) for param_group in optimizer.param_groups: print('learning_rate', param_group['lr']) print('') print('#' * 50) checkpoint = Checkpoint(epoch, 0, None, None, best_loss, net.state_dict(), optimizer.state_dict()) checkpoint.save( False, os.path.join(self.model_path, self.model_name + '-{}.model'.format(epoch + 1)), os.path.join(self.model_path, best_model)) metric_logging(self.log_path, self.model_name + '_metric_log.txt', epoch, [avg_st, avg_sn, avg_pe]) start_iter = 0.
def train(args): torch.manual_seed(args.seed) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = Network() model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) criterion = nn.MSELoss() fb = FlappyBird() image, reward, terminal, score = fb.next_frame(randint(0, 1))[:-1] img = image_pre_processing(image, args.img_size, args.img_size) img = torch.from_numpy(img) img.to(device) state = torch.cat(tuple(img for _ in range(4)))[None, :, :, :] replay_memory = [] episode = 0 while 1: prediction = model(state)[0] epsilon = args.initial_epsilon if np.random.uniform() > epsilon: action = torch.argmax(prediction) else: action = randint(0, 1) next_image, reward, terminal = fb.next_frame(action, '')[:3] if terminal: fb.__init__() next_image, reward, terminal = fb.next_frame(action, '')[:3] next_img = image_pre_processing(next_image, args.img_size, args.img_size) next_img = torch.from_numpy(next_img) next_state = torch.cat((state[0, 1:, :, :], next_img))[None, :, :, :] replay_memory.append([state, action, reward, next_state, terminal]) if len(replay_memory) > args.replay_memory_size: del replay_memory[0] batch = sample(replay_memory, min(len(replay_memory), args.batch_size)) state_batch, action_batch, reward_batch, next_state_batch, terminal_batch = zip( *batch) state_batch = torch.cat(tuple(state for state in state_batch)) action_batch = torch.from_numpy( np.array([[1, 0] if action == 0 else [0, 1] for action in action_batch], dtype=np.float32)) reward_batch = torch.from_numpy( np.array(reward_batch, dtype=np.float32)[:, None]) next_state_batch = torch.cat(tuple(state for state in next_state_batch)) state_batch.to(device) action_batch.to(device) reward_batch.to(device) next_state_batch.to(device) current_prediction_batch = model(state_batch) next_prediction_batch = model(next_state_batch) y_batch = torch.cat( tuple(reward if terminal else reward + args.gamma * torch.max(prediction) for reward, terminal, prediction in \ zip(reward_batch, terminal_batch, next_prediction_batch)) ) q_value = torch.sum(current_prediction_batch * action_batch, dim=1) optimizer.zero_grad() loss = criterion(q_value, y_batch) loss.backward() optimizer.step() state = next_state episode += 1