Exemplo n.º 1
0
def current_flow_closeness_centrality(G,
                                      weight=None,
                                      dtype=float,
                                      solver="lu"):
    """Compute current-flow closeness centrality for nodes.

    Current-flow closeness centrality is variant of closeness
    centrality based on effective resistance between nodes in
    a network. This metric is also known as information centrality.

    Parameters
    ----------
    G : graph
      A NetworkX graph.

    weight : None or string, optional (default=None)
      If None, all edge weights are considered equal.
      Otherwise holds the name of the edge attribute used as weight.
      The weight reflects the capacity or the strength of the
      edge.

    dtype: data type (default=float)
      Default data type for internal matrices.
      Set to np.float32 for lower memory consumption.

    solver: string (default='lu')
       Type of linear solver to use for computing the flow matrix.
       Options are "full" (uses most memory), "lu" (recommended), and
       "cg" (uses least memory).

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with current flow closeness centrality as the value.

    See Also
    --------
    closeness_centrality

    Notes
    -----
    The algorithm is from Brandes [1]_.

    See also [2]_ for the original definition of information centrality.

    References
    ----------
    .. [1] Ulrik Brandes and Daniel Fleischer,
       Centrality Measures Based on Current Flow.
       Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
       LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
       http://algo.uni-konstanz.de/publications/bf-cmbcf-05.pdf

    .. [2] Karen Stephenson and Marvin Zelen:
       Rethinking centrality: Methods and examples.
       Social Networks 11(1):1-37, 1989.
       https://doi.org/10.1016/0378-8733(89)90016-6
    """
    if not nx.is_connected(G):
        raise nx.NetworkXError("Graph not connected.")
    solvername = {
        "full": FullInverseLaplacian,
        "lu": SuperLUInverseLaplacian,
        "cg": CGInverseLaplacian,
    }
    n = G.number_of_nodes()
    ordering = list(reverse_cuthill_mckee_ordering(G))
    # make a copy with integer labels according to rcm ordering
    # this could be done without a copy if we really wanted to
    H = nx.relabel_nodes(G, dict(zip(ordering, range(n))))
    betweenness = dict.fromkeys(H, 0.0)  # b[v]=0 for v in H
    n = H.number_of_nodes()
    L = laplacian_sparse_matrix(H,
                                nodelist=range(n),
                                weight=weight,
                                dtype=dtype,
                                format="csc")
    C2 = solvername[solver](L, width=1, dtype=dtype)  # initialize solver
    for v in H:
        col = C2.get_row(v)
        for w in H:
            betweenness[v] += col[v] - 2 * col[w]
            betweenness[w] += col[v]
    for v in H:
        betweenness[v] = 1.0 / (betweenness[v])
    return {ordering[k]: float(v) for k, v in betweenness.items()}
Exemplo n.º 2
0
def approximate_current_flow_betweenness_centrality(G,
                                                    normalized=True,
                                                    weight=None,
                                                    dtype=float,
                                                    solver='full',
                                                    epsilon=0.5,
                                                    kmax=10000,
                                                    seed=None):
    r"""Compute the approximate current-flow betweenness centrality for nodes.

    Approximates the current-flow betweenness centrality within absolute
    error of epsilon with high probability [1]_.


    Parameters
    ----------
    G : graph
      A NetworkX graph

    normalized : bool, optional (default=True)
      If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
      n is the number of nodes in G.

    weight : string or None, optional (default=None)
      Key for edge data used as the edge weight.
      If None, then use 1 as each edge weight.

    dtype : data type (float)
      Default data type for internal matrices.
      Set to np.float32 for lower memory consumption.

    solver : string (default='lu')
       Type of linear solver to use for computing the flow matrix.
       Options are "full" (uses most memory), "lu" (recommended), and
       "cg" (uses least memory).

    epsilon: float
        Absolute error tolerance.

    kmax: int
       Maximum number of sample node pairs to use for approximation.

    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with betweenness centrality as the value.

    See Also
    --------
    current_flow_betweenness_centrality

    Notes
    -----
    The running time is $O((1/\epsilon^2)m{\sqrt k} \log n)$
    and the space required is $O(m)$ for $n$ nodes and $m$ edges.

    If the edges have a 'weight' attribute they will be used as
    weights in this algorithm.  Unspecified weights are set to 1.

    References
    ----------
    .. [1] Ulrik Brandes and Daniel Fleischer:
       Centrality Measures Based on Current Flow.
       Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
       LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
       http://algo.uni-konstanz.de/publications/bf-cmbcf-05.pdf
    """
    try:
        import numpy as np
    except ImportError:
        raise ImportError(
            'current_flow_betweenness_centrality requires NumPy ',
            'http://scipy.org/')
    try:
        from scipy import sparse
        from scipy.sparse import linalg
    except ImportError:
        raise ImportError(
            'current_flow_betweenness_centrality requires SciPy ',
            'http://scipy.org/')
    if not nx.is_connected(G):
        raise nx.NetworkXError("Graph not connected.")
    solvername = {
        "full": FullInverseLaplacian,
        "lu": SuperLUInverseLaplacian,
        "cg": CGInverseLaplacian
    }
    n = G.number_of_nodes()
    ordering = list(reverse_cuthill_mckee_ordering(G))
    # make a copy with integer labels according to rcm ordering
    # this could be done without a copy if we really wanted to
    H = nx.relabel_nodes(G, dict(zip(ordering, range(n))))
    L = laplacian_sparse_matrix(H,
                                nodelist=range(n),
                                weight=weight,
                                dtype=dtype,
                                format='csc')
    C = solvername[solver](L, dtype=dtype)  # initialize solver
    betweenness = dict.fromkeys(H, 0.0)
    nb = (n - 1.0) * (n - 2.0)  # normalization factor
    cstar = n * (n - 1) / nb
    l = 1  # parameter in approximation, adjustable
    k = l * int(np.ceil((cstar / epsilon)**2 * np.log(n)))
    if k > kmax:
        msg = 'Number random pairs k>kmax (%d>%d) ' % (k, kmax)
        raise nx.NetworkXError(msg, 'Increase kmax or epsilon')
    cstar2k = cstar / (2 * k)
    for i in range(k):
        s, t = seed.sample(range(n), 2)
        b = np.zeros(n, dtype=dtype)
        b[s] = 1
        b[t] = -1
        p = C.solve(b)
        for v in H:
            if v == s or v == t:
                continue
            for nbr in H[v]:
                w = H[v][nbr].get(weight, 1.0)
                betweenness[v] += w * np.abs(p[v] - p[nbr]) * cstar2k
    if normalized:
        factor = 1.0
    else:
        factor = nb / 2.0
    # remap to original node names and "unnormalize" if required
    return dict(
        (ordering[k], float(v * factor)) for k, v in betweenness.items())