Exemplo n.º 1
0
    def test_eigenvectors(self):
        np = pytest.importorskip("numpy")
        eigenval = np.linalg.eigvals
        scipy = pytest.importorskip("scipy")

        cs = "ddiiddid"
        G = nxt.threshold_graph(cs)
        (tgeval, tgevec) = nxt.eigenvectors(cs)
        dot = np.dot
        assert [abs(dot(lv, lv) - 1.0) < 1e-9 for lv in tgevec] == [True] * 8
        lapl = nx.laplacian_matrix(G)
Exemplo n.º 2
0
    def test_eigenvectors(self):
        np = pytest.importorskip("numpy")
        eigenval = np.linalg.eigvals
        pytest.importorskip("scipy")

        cs = "ddiiddid"
        G = nxt.threshold_graph(cs)
        (tgeval, tgevec) = nxt.eigenvectors(cs)
        np.testing.assert_allclose([np.dot(lv, lv) for lv in tgevec],
                                   1.0,
                                   rtol=1e-9)
        lapl = nx.laplacian_matrix(G)
Exemplo n.º 3
0
    def test_eigenvectors(self):
        try:
            import numpy as N
            eigenval=N.linalg.eigvals
            import scipy
        except ImportError:
            raise SkipTest('SciPy not available.')

        cs='ddiiddid'
        G=nxt.threshold_graph(cs)
        (tgeval,tgevec)=nxt.eigenvectors(cs)
        dot=N.dot
        assert_equal([ abs(dot(lv,lv)-1.0)<1e-9 for lv in tgevec ], [True]*8)
        lapl=nx.laplacian_matrix(G)
Exemplo n.º 4
0
    def test_eigenvectors(self):
        try:
            import numpy as N
            eigenval = N.linalg.eigvals
            import scipy
        except ImportError:
            raise SkipTest('SciPy not available.')

        cs = 'ddiiddid'
        G = nxt.threshold_graph(cs)
        (tgeval, tgevec) = nxt.eigenvectors(cs)
        dot = N.dot
        assert_equal([abs(dot(lv, lv) - 1.0) < 1e-9 for lv in tgevec], [True] * 8)
        lapl = nx.laplacian_matrix(G)