Exemplo n.º 1
0
 def test_watts_strogatz_big_k(self):
     assert_raises(NetworkXError, watts_strogatz_graph, 10, 10, 0.25)
     assert_raises(NetworkXError, newman_watts_strogatz_graph, 10, 10, 0.25)
     # could create an infinite loop, now doesn't
     # infinite loop used to occur when a node has degree n-1 and needs to rewire
     watts_strogatz_graph(10, 9, 0.25, seed=0)
     newman_watts_strogatz_graph(10, 9, 0.5, seed=0)
Exemplo n.º 2
0
 def test_watts_strogatz_big_k(self):
     assert_raises(NetworkXError, watts_strogatz_graph, 10, 10, 0.25)
     assert_raises(NetworkXError, newman_watts_strogatz_graph, 10, 10, 0.25)
     # could create an infinite loop, now doesn't
     # infinite loop used to occur when a node has degree n-1 and needs to rewire
     watts_strogatz_graph(10, 9, 0.25, seed=0)
     newman_watts_strogatz_graph(10, 9, 0.5, seed=0)
Exemplo n.º 3
0
    def smoke_test_random_graph(self):
        seed = 42
        G=gnp_random_graph(100,0.25,seed)
        G=binomial_graph(100,0.25,seed)
        G=erdos_renyi_graph(100,0.25,seed)
        G=fast_gnp_random_graph(100,0.25,seed)
        G=gnm_random_graph(100,20,seed)
        G=dense_gnm_random_graph(100,20,seed)

        G=watts_strogatz_graph(10,2,0.25,seed)
        assert_equal(len(G), 10)
        assert_equal(G.number_of_edges(), 10)

        G=connected_watts_strogatz_graph(10,2,0.1,seed)
        assert_equal(len(G), 10)
        assert_equal(G.number_of_edges(), 10)

        G=watts_strogatz_graph(10,4,0.25,seed)
        assert_equal(len(G), 10)
        assert_equal(G.number_of_edges(), 20)

        G=newman_watts_strogatz_graph(10,2,0.0,seed)
        assert_equal(len(G), 10)
        assert_equal(G.number_of_edges(), 10)

        G=newman_watts_strogatz_graph(10,4,0.25,seed)
        assert_equal(len(G), 10)
        assert_true(G.number_of_edges() >= 20)

        G=barabasi_albert_graph(100,1,seed)
        G=barabasi_albert_graph(100,3,seed)
        assert_equal(G.number_of_edges(),(97*3))

        G = extended_barabasi_albert_graph(100, 1, 0, 0, seed)
        assert_equal(G.number_of_edges(), 99)
        G = extended_barabasi_albert_graph(100, 3, 0, 0, seed)
        assert_equal(G.number_of_edges(), 97 * 3)
        G = extended_barabasi_albert_graph(100, 1, 0, 0.5, seed)
        assert_equal(G.number_of_edges(), 99)
        G = extended_barabasi_albert_graph(100, 2, 0.5, 0, seed)
        assert_greater(G.number_of_edges(), 100 * 3)
        assert_less(G.number_of_edges(), 100 * 4)

        G=extended_barabasi_albert_graph(100, 2, 0.3, 0.3, seed)
        assert_greater(G.number_of_edges(), 100 * 2)
        assert_less(G.number_of_edges(), 100 * 4)

        G=powerlaw_cluster_graph(100,1,1.0,seed)
        G=powerlaw_cluster_graph(100,3,0.0,seed)
        assert_equal(G.number_of_edges(),(97*3))

        G=random_regular_graph(10,20,seed)

        assert_raises(NetworkXError, random_regular_graph, 3, 21)

        constructor=[(10,20,0.8),(20,40,0.8)]
        G=random_shell_graph(constructor,seed)

        G=random_lobster(10,0.1,0.5,seed)
Exemplo n.º 4
0
    def smoke_test_random_graph(self):
        seed = 42
        G=gnp_random_graph(100,0.25,seed)
        G=binomial_graph(100,0.25,seed)
        G=erdos_renyi_graph(100,0.25,seed)
        G=fast_gnp_random_graph(100,0.25,seed)
        G=gnm_random_graph(100,20,seed)
        G=dense_gnm_random_graph(100,20,seed)

        G=watts_strogatz_graph(10,2,0.25,seed)
        assert_equal(len(G), 10)
        assert_equal(G.number_of_edges(), 10)

        G=connected_watts_strogatz_graph(10,2,0.1,seed)
        assert_equal(len(G), 10)
        assert_equal(G.number_of_edges(), 10)

        G=watts_strogatz_graph(10,4,0.25,seed)
        assert_equal(len(G), 10)
        assert_equal(G.number_of_edges(), 20)

        G=newman_watts_strogatz_graph(10,2,0.0,seed)
        assert_equal(len(G), 10)
        assert_equal(G.number_of_edges(), 10)

        G=newman_watts_strogatz_graph(10,4,0.25,seed)
        assert_equal(len(G), 10)
        assert_true(G.number_of_edges() >= 20)

        G=barabasi_albert_graph(100,1,seed)
        G=barabasi_albert_graph(100,3,seed)
        assert_equal(G.number_of_edges(),(97*3))

        G = extended_barabasi_albert_graph(100, 1, 0, 0, seed)
        assert_equal(G.number_of_edges(), 99)
        G = extended_barabasi_albert_graph(100, 3, 0, 0, seed)
        assert_equal(G.number_of_edges(), 97 * 3)
        G = extended_barabasi_albert_graph(100, 1, 0, 0.5, seed)
        assert_equal(G.number_of_edges(), 99)
        G = extended_barabasi_albert_graph(100, 2, 0.5, 0, seed)
        assert_greater(G.number_of_edges(), 100 * 3)
        assert_less(G.number_of_edges(), 100 * 4)

        G=extended_barabasi_albert_graph(100, 2, 0.3, 0.3, seed)
        assert_greater(G.number_of_edges(), 100 * 2)
        assert_less(G.number_of_edges(), 100 * 4)

        G=powerlaw_cluster_graph(100,1,1.0,seed)
        G=powerlaw_cluster_graph(100,3,0.0,seed)
        assert_equal(G.number_of_edges(),(97*3))

        G=random_regular_graph(10,20,seed)

        assert_raises(NetworkXError, random_regular_graph, 3, 21)

        constructor=[(10,20,0.8),(20,40,0.8)]
        G=random_shell_graph(constructor,seed)

        G=random_lobster(10,0.1,0.5,seed)
Exemplo n.º 5
0
    def test_watts_strogatz_big_k(self):
        # Test to make sure than n <= k
        pytest.raises(NetworkXError, watts_strogatz_graph, 10, 11, 0.25)
        pytest.raises(NetworkXError, newman_watts_strogatz_graph, 10, 11, 0.25)

        # could create an infinite loop, now doesn't
        # infinite loop used to occur when a node has degree n-1 and needs to rewire
        watts_strogatz_graph(10, 9, 0.25, seed=0)
        newman_watts_strogatz_graph(10, 9, 0.5, seed=0)

        # Test k==n scenario
        watts_strogatz_graph(10, 10, 0.25, seed=0)
        newman_watts_strogatz_graph(10, 10, 0.25, seed=0)
Exemplo n.º 6
0
    def _createGraph(self):
        dlg = PropertyViewer(self.name, self.icon,
            Nodes=Integer(5, 1, 100, 1),
            Neighboors=Integer(2,1,100,1),
            Density=Float(0.5))

        nodes = []
        edges = []

        if dlg.exec_():
            values = dlg.values()
            n = values['Nodes']
            k = values['Neighboors']
            p = values['Density']

            G = rnd.watts_strogatz_graph(n, k, p)

            nodes = layout.circularNodes(n, 25)

            for i in G.edges_iter():
                edges.append(i)

        return nodes, edges
def watts_strogatz_generator(args):
    return generators.watts_strogatz_graph(args.num_nodes,
                                           args.k_nearest_neighbors,
                                           args.probability)
Exemplo n.º 8
0
    def smoke_test_random_graph(self):
        seed = 42
        G = gnp_random_graph(100, 0.25, seed)
        G = gnp_random_graph(100, 0.25, seed, directed=True)
        G = binomial_graph(100, 0.25, seed)
        G = erdos_renyi_graph(100, 0.25, seed)
        G = fast_gnp_random_graph(100, 0.25, seed)
        G = fast_gnp_random_graph(100, 0.25, seed, directed=True)
        G = gnm_random_graph(100, 20, seed)
        G = gnm_random_graph(100, 20, seed, directed=True)
        G = dense_gnm_random_graph(100, 20, seed)

        G = watts_strogatz_graph(10, 2, 0.25, seed)
        assert len(G) == 10
        assert G.number_of_edges() == 10

        G = connected_watts_strogatz_graph(10, 2, 0.1, tries=10, seed=seed)
        assert len(G) == 10
        assert G.number_of_edges() == 10
        pytest.raises(NetworkXError, connected_watts_strogatz_graph, \
                      10, 2, 0.1, tries=0)

        G = watts_strogatz_graph(10, 4, 0.25, seed)
        assert len(G) == 10
        assert G.number_of_edges() == 20

        G = newman_watts_strogatz_graph(10, 2, 0.0, seed)
        assert len(G) == 10
        assert G.number_of_edges() == 10

        G = newman_watts_strogatz_graph(10, 4, 0.25, seed)
        assert len(G) == 10
        assert G.number_of_edges() >= 20

        G = barabasi_albert_graph(100, 1, seed)
        G = barabasi_albert_graph(100, 3, seed)
        assert G.number_of_edges() == (97 * 3)

        G = extended_barabasi_albert_graph(100, 1, 0, 0, seed)
        assert G.number_of_edges() == 99
        G = extended_barabasi_albert_graph(100, 3, 0, 0, seed)
        assert G.number_of_edges() == 97 * 3
        G = extended_barabasi_albert_graph(100, 1, 0, 0.5, seed)
        assert G.number_of_edges() == 99
        G = extended_barabasi_albert_graph(100, 2, 0.5, 0, seed)
        assert G.number_of_edges() > 100 * 3
        assert G.number_of_edges() < 100 * 4

        G = extended_barabasi_albert_graph(100, 2, 0.3, 0.3, seed)
        assert G.number_of_edges() > 100 * 2
        assert G.number_of_edges() < 100 * 4

        G = powerlaw_cluster_graph(100, 1, 1.0, seed)
        G = powerlaw_cluster_graph(100, 3, 0.0, seed)
        assert G.number_of_edges() == (97 * 3)

        G = random_regular_graph(10, 20, seed)

        pytest.raises(NetworkXError, random_regular_graph, 3, 21)
        pytest.raises(NetworkXError, random_regular_graph, 33, 21)

        constructor = [(10, 20, 0.8), (20, 40, 0.8)]
        G = random_shell_graph(constructor, seed)

        G = random_lobster(10, 0.1, 0.5, seed)

        # difficult to find seed that requires few tries
        seq = random_powerlaw_tree_sequence(10, 3, seed=14, tries=1)
        G = random_powerlaw_tree(10, 3, seed=14, tries=1)
Exemplo n.º 9
0
    def test_random_graph(self):
        seed = 42
        G = gnp_random_graph(100, 0.25, seed)
        G = gnp_random_graph(100, 0.25, seed, directed=True)
        G = binomial_graph(100, 0.25, seed)
        G = erdos_renyi_graph(100, 0.25, seed)
        G = fast_gnp_random_graph(100, 0.25, seed)
        G = fast_gnp_random_graph(100, 0.25, seed, directed=True)
        G = gnm_random_graph(100, 20, seed)
        G = gnm_random_graph(100, 20, seed, directed=True)
        G = dense_gnm_random_graph(100, 20, seed)

        G = watts_strogatz_graph(10, 2, 0.25, seed)
        assert len(G) == 10
        assert G.number_of_edges() == 10

        G = connected_watts_strogatz_graph(10, 2, 0.1, tries=10, seed=seed)
        assert len(G) == 10
        assert G.number_of_edges() == 10
        pytest.raises(NetworkXError,
                      connected_watts_strogatz_graph,
                      10,
                      2,
                      0.1,
                      tries=0)

        G = watts_strogatz_graph(10, 4, 0.25, seed)
        assert len(G) == 10
        assert G.number_of_edges() == 20

        G = newman_watts_strogatz_graph(10, 2, 0.0, seed)
        assert len(G) == 10
        assert G.number_of_edges() == 10

        G = newman_watts_strogatz_graph(10, 4, 0.25, seed)
        assert len(G) == 10
        assert G.number_of_edges() >= 20

        G = barabasi_albert_graph(100, 1, seed)
        G = barabasi_albert_graph(100, 3, seed)
        assert G.number_of_edges() == (97 * 3)

        G = extended_barabasi_albert_graph(100, 1, 0, 0, seed)
        assert G.number_of_edges() == 99
        G = extended_barabasi_albert_graph(100, 3, 0, 0, seed)
        assert G.number_of_edges() == 97 * 3
        G = extended_barabasi_albert_graph(100, 1, 0, 0.5, seed)
        assert G.number_of_edges() == 99
        G = extended_barabasi_albert_graph(100, 2, 0.5, 0, seed)
        assert G.number_of_edges() > 100 * 3
        assert G.number_of_edges() < 100 * 4

        G = extended_barabasi_albert_graph(100, 2, 0.3, 0.3, seed)
        assert G.number_of_edges() > 100 * 2
        assert G.number_of_edges() < 100 * 4

        G = powerlaw_cluster_graph(100, 1, 1.0, seed)
        G = powerlaw_cluster_graph(100, 3, 0.0, seed)
        assert G.number_of_edges() == (97 * 3)

        G = random_regular_graph(10, 20, seed)

        pytest.raises(NetworkXError, random_regular_graph, 3, 21)
        pytest.raises(NetworkXError, random_regular_graph, 33, 21)

        constructor = [(10, 20, 0.8), (20, 40, 0.8)]
        G = random_shell_graph(constructor, seed)

        def is_caterpillar(g):
            """
            A tree is a caterpillar iff all nodes of degree >=3 are surrounded
            by at most two nodes of degree two or greater.
            ref: http://mathworld.wolfram.com/CaterpillarGraph.html
            """
            deg_over_3 = [n for n in g if g.degree(n) >= 3]
            for n in deg_over_3:
                nbh_deg_over_2 = [
                    nbh for nbh in g.neighbors(n) if g.degree(nbh) >= 2
                ]
                if not len(nbh_deg_over_2) <= 2:
                    return False
            return True

        def is_lobster(g):
            """
            A tree is a lobster if it has the property that the removal of leaf
            nodes leaves a caterpillar graph (Gallian 2007)
            ref: http://mathworld.wolfram.com/LobsterGraph.html
            """
            non_leafs = [n for n in g if g.degree(n) > 1]
            return is_caterpillar(g.subgraph(non_leafs))

        G = random_lobster(10, 0.1, 0.5, seed)
        assert max([G.degree(n) for n in G.nodes()]) > 3
        assert is_lobster(G)
        pytest.raises(NetworkXError, random_lobster, 10, 0.1, 1, seed)
        pytest.raises(NetworkXError, random_lobster, 10, 1, 1, seed)
        pytest.raises(NetworkXError, random_lobster, 10, 1, 0.5, seed)

        # docstring says this should be a caterpillar
        G = random_lobster(10, 0.1, 0.0, seed)
        assert is_caterpillar(G)

        # difficult to find seed that requires few tries
        seq = random_powerlaw_tree_sequence(10, 3, seed=14, tries=1)
        G = random_powerlaw_tree(10, 3, seed=14, tries=1)
Exemplo n.º 10
0
def small_world_generator(n):
    k = max(2, int(2 * math.log(n)))
    return watts_strogatz_graph(n, k, 0.1)