Exemplo n.º 1
0
def plot_MRF(adj_mat, thresh=0.01, ax=None):
    # Filter out subthreshold values in adj_mat
    adj_mat = np.where(
        np.abs(adj_mat) > thresh, adj_mat, np.zeros(adj_mat.shape))
    # Create graph object
    G = nx.Graph(adj_mat)
    pos = nx.layout.circular_layout(G, scale=0.5)
    node_colors = [palette[n] for n in G.nodes]
    edge_colors = [v['weight'] for _, _, v, in G.edges(data=True)]
    vmin, vmax = min(edge_colors), max(edge_colors)
    cmap = plt.get_cmap()
    nx.draw_networkx_nodes(G,
                           pos,
                           ax=ax,
                           node_color=node_colors,
                           node_size=700)
    nx.draw_networkx_edges(G,
                           pos,
                           ax=ax,
                           edge_color=edge_colors,
                           edge_cmap=cmap,
                           edge_vmin=vmin,
                           edge_vmax=vmax,
                           width=2.5)
    # Colourbar
    sm = plt.cm.ScalarMappable(cmap=cmap,
                               norm=plt.Normalize(vmin=vmax, vmax=vmin))
    fig.colorbar(sm, orientation="horizontal", pad=0.01, ax=ax)
    nx.draw_networkx_labels(G, pos, ax=ax)
Exemplo n.º 2
0
def draw_graph(relationships):
    G = nx.Graph()

    add_edges(relationships, G)

    elarge = [(u, v) for (u, v, d) in G.edges(data=True)]

    # positions for all nodes
    pos = nx.spring_layout(G, k=1, seed=1)

    # nodes
    nx.draw_networkx_nodes(G, pos, node_size=90, node_color="k")

    # edges
    nx.draw_networkx_edges(G, pos, edgelist=elarge, width=0.1, edge_color="b")

    # labels
    nx.draw_networkx_labels(G,
                            pos,
                            font_size=0.3,
                            font_family="sans-serif",
                            font_color="w")

    # no_overwrite("output\\graph", ".pdf")
    no_overwrite("output\\graph", ".png")
Exemplo n.º 3
0
def draw_graph_labels(graph, nodes=[], colors=[]):
    # Draw the graph
    pos = graphviz_layout(graph, prog='neato')
    nx.draw_networkx_nodes(graph,
                           pos,
                           nodelist=graph.nodes(),
                           node_color="blue")
    for i, x in enumerate(nodes):
        nx.draw_networkx_nodes(graph, pos, nodelist=x, node_color=colors[i])
    nx.draw_networkx_edges(graph, pos, graph.edges(), edge_color="black")
    plt.axis('off')
    plt.show()
Exemplo n.º 4
0
def save_graph(graph, n, p):
    #initialze Figure
    plt.figure(num=None, figsize=(20, 20), dpi=80)
    plt.axis('off')
    fig = plt.figure(figsize=(50, 40))

    pos = nx.circular_layout(graph)
    nx.draw_networkx_nodes(graph, pos)
    nx.draw_networkx_edges(graph, pos)
    nx.draw_networkx_labels(graph, pos)

    file_name = 'Q8_Assets/SmallWorld_N_' + str(n) + '_P_' + str(p) + '.pdf'
    plt.savefig(file_name, bbox_inches="tight")
    plt.close(fig)
    del fig
Exemplo n.º 5
0
def save_graph(graph, n, p):
    #initialze Figure
    plt.figure(num=None, figsize=(20, 20), dpi=80)
    plt.axis('off')
    fig = plt.figure(figsize=(20, 15))

    pos = nx.spring_layout(graph)
    nx.draw_networkx_nodes(graph, pos)
    nx.draw_networkx_edges(graph, pos)
    nx.draw_networkx_labels(graph, pos)

    file_name = 'Q7_Assets/ErdosRenyi_N_' + str(n) + '_P_' + str(p) + '.pdf'
    plt.savefig(file_name, bbox_inches="tight")
    plt.close(fig)
    del fig
Exemplo n.º 6
0
def drawGraph(filename):
  location = latlong('latlong_us.txt')
  g = nx.Graph()
  with open(filename) as f:
    for line in f:
      src, dst = line.split('->')
      tmp = src.split(':')[1].split(',')
      src = tmp[0].replace(' ', '') + ',' + tmp[1].strip()
      tmp = dst.split(':')[1].split(',')
      dst = tmp[0].strip().replace(' ', '') + ',' + tmp[1].strip().split()[0]
      g.add_edge(src, dst)
  print len(g.nodes())
  print len(g.edges())
	  
  pos = {}
  cnt = 0
  for node in g.nodes():
    cnt += 1
    inx = None
    if location.has_key(node):
      inx = node
    else:
      for key in location.keys():
        addr = node.split(',')
        if (addr[0] in key and addr[1] in key):
          inx = key
    if not inx:
      print node
      print "%d/%d" % (cnt, len(g.nodes()))
      raise
    pos[node] = (180-location[inx][1], location[inx][0])
      
  #pos=nx.graphviz_layout(g,prog="fdp")
  #pos=nx.spring_layout(g)
  plt.figure(figsize=(10,8))
  #plt.axis('off')
  plt.xticks([]), plt.yticks([])
  nx.draw_networkx_nodes(g, pos = pos, node_color = 'red', node_size = 30, with_labels=False)
  nx.draw_networkx_edges(g,pos,alpha=0.4)
  plt.axis('equal')
  plt.show()
Exemplo n.º 7
0
def draw_graph_with_labels_training(GraphGenerationObject):
    # Draw the graph
    pos = graphviz_layout(GraphGenerationObject.Graph, prog='neato')
    nx.draw_networkx_nodes(GraphGenerationObject.Graph,
                           pos,
                           nodelist=GraphGenerationObject.learning_green_nodes,
                           node_color="green")
    nx.draw_networkx_nodes(GraphGenerationObject.Graph,
                           pos,
                           nodelist=GraphGenerationObject.learning_red_nodes,
                           node_color="red")
    nx.draw_networkx_nodes(GraphGenerationObject.Graph,
                           pos,
                           nodelist=GraphGenerationObject.blue_nodes,
                           node_color="blue")
    nx.draw_networkx_labels(GraphGenerationObject.Graph,
                            pos,
                            nodelist=GraphGenerationObject.Graph.nodes())
    nx.draw_networkx_edges(GraphGenerationObject.Graph,
                           pos,
                           GraphGenerationObject.Graph.edges(),
                           edge_color="black")
    plt.axis('off')
    plt.show()
Exemplo n.º 8
0
def demo_pytorch_computational_graph(
    t,
    init_gradient=None,
    figsize=(12, 6),
    padding=40
):
    import torch
    import networkx as nx
    import numpy as np
    import matplotlib.pyplot as plt

    if init_gradient is None:
        init_gradient = torch.tensor(1.0)

    G_forward = nx.DiGraph()  # for layout
    G = nx.MultiDiGraph()
    stack = [(t.grad_fn, t.grad_fn(init_gradient))]
    node_labels = {}
    while stack:
        node, outer_gradient = stack.pop()
        node_id = str(id(node)) + node.name()
        node_labels[node_id] = node.name()
        for n, n_outer_gradient in zip(node.next_functions, outer_gradient):
            if n[0] is not None:
                n_id = str(id(n[0])) + n[0].name()
                node_labels[n_id] = n[0].name()
                G_forward.add_edge(n_id, node_id)
                G.add_edge(node_id, n_id, label=n_outer_gradient.item())
                stack.append((n[0], n[0](n_outer_gradient)))
    # place nodes left-to-right
    # "regular" top-to-bottom layout
    nodes_layout = nx.nx_pydot.graphviz_layout(G_forward, prog='dot')
    # make right-to-left from top-to-bottom
    nodes_layout = {k: (-v[1], v[0]) for k, v in nodes_layout.items()}

    # visualize
    x_min = min([c[0] for c in nodes_layout.values()])
    x_max = max([c[0] for c in nodes_layout.values()])
    y_min = min([c[1] for c in nodes_layout.values()])
    y_max = max([c[1] for c in nodes_layout.values()])

    plt.figure(figsize=figsize)
    plt.xlim(x_min - padding, x_max + padding)
    plt.ylim(y_min - padding, y_max + padding)
    # draw nodes
    nx.draw_networkx_nodes(G, node_color="#a2c4fc", pos=nodes_layout)
    nx.draw_networkx_labels(G, pos=nodes_layout, labels=node_labels)
    # draw edges
    for e in G.edges:
        l = G.edges[e]["label"]
        current_multiplicity = e[2]
        coords = tuple(0.5 * (np.array(nodes_layout[e[0]]) + np.array(nodes_layout[e[1]])) - 10 * current_multiplicity)
        plt.annotate(l, coords, color="r", ha='center')
        # hacky arrows
        plt.annotate(
            "",
            xy=nodes_layout[e[1]], xycoords='data',
            xytext=nodes_layout[e[0]], textcoords='data',
            arrowprops=dict(
                arrowstyle="simple",
                color="r",
                alpha=0.5,
                shrinkA=10, shrinkB=10,
                connectionstyle="arc3,rad={}".format(-0.1*(1 + current_multiplicity))
            ),
        )
Exemplo n.º 9
0
    def visualize(forward_idx=0, backward_idx=0):
        plt.figure(figsize=figsize)
        plt.xlim(x_min - padding, x_max + padding)
        plt.ylim(y_min - padding, y_max + padding)
        plt.axis('equal')
        if title:
            plt.title(r"Computational graph for " + title, fontsize=font_size)

        # draw nodes
        nx.draw_networkx_nodes(G_forward, node_color="#a2c4fc", pos=nodes_layout, node_size=node_size)
        nx.draw_networkx_labels(G_forward, pos=nodes_layout, labels=node_labels, font_size=font_size)
        edges_kwargs = dict(pos=nodes_layout, connectionstyle="arc3,rad=-0.1", width=2)
        # draw forward edges
        nx.draw_networkx_edges(G_forward, edge_color=forward_color, alpha=0.5, **edges_kwargs)
        # draw backward edges
        nx.draw_networkx_edges(G_backward, edge_color=backward_color, alpha=0.5, **edges_kwargs)

        # draw labels
        def label_coordinates(v1, v2, norm_fraction=0.15, backward=False):
            v1 = np.array(v1)
            v2 = np.array(v2)
            center = 0.5 * (v1 + v2)
            if backward:
                d = v1 - v2
            else:
                d = v2 - v1
            norm = np.sqrt(d @ d)
            d /= norm
            shift = np.array([-d[1], d[0]]) * norm_fraction * norm
            if backward:
                shift = -shift
            angle = math.degrees(math.atan2(d[1], d[0]))
            if angle > 90:
                angle -= 180
            elif angle < -90:
                angle += 180
            return tuple(center + shift), angle

        active_forward_edges = []
        for e, l in forward_edge_label[:forward_idx]:
            active_forward_edges.append(e)
            norm_fraction = 0.1 + 0.05 * len(l.split("\n"))  # larger shift for multiline labels
            coords, angle = label_coordinates(nodes_layout[e[0]], nodes_layout[e[1]], norm_fraction=norm_fraction)
            plt.annotate(l, coords, color=forward_color, size=font_size, ha='center', rotation=angle,
                         rotation_mode='anchor')

        # highlight forward edges
        nx.draw_networkx_edges(G_forward, edgelist=active_forward_edges, edge_color=forward_color, alpha=1,
                               **edges_kwargs)

        active_backward_edges = []
        for e, l in backward_edge_label[:backward_idx]:
            active_backward_edges.append(e)
            norm_fraction = 0.1 + 0.05 * len(l.split("\n"))  # larger shift for multiline labels
            coords, angle = label_coordinates(nodes_layout[e[0]], nodes_layout[e[1]], norm_fraction=norm_fraction,
                                              backward=True)
            plt.annotate(l, coords, color=backward_color, size=font_size, ha='center', rotation=angle,
                         rotation_mode='anchor')

        # highlight backward edges
        nx.draw_networkx_edges(G_backward, edgelist=active_backward_edges, edge_color=backward_color, alpha=1,
                               **edges_kwargs)

        plt.show()
Exemplo n.º 10
0
def solve(a, p, b):

    nitems = len(p)
    items = range(nitems)

    vertices = [[i, j] for i in range(b)
                for j in items]  # Vertices are named (i,j), see lecture

    k = 0
    for vertice in vertices:
        vertice.append(k)
        k += 1

    G = nx.DiGraph()

    arcs = []  # List of tuples, i.e. [((i,j), (k,l),w), ((k,l), (u,v),0)]
    for i, j, x_1 in vertices:
        for k, l, x_2 in vertices:
            if (i == k and j == l):
                continue
            elif (i == k and l - j == 1):
                arcs.append((x_1, x_2, 0))

                G.add_edge(x_1, x_2, weight=0)
            elif (i - k == -1 and j == l):
                arcs.append((x_1, x_2, 1))
                G.add_edge(x_1, x_2, weight=1)

    #  print(arcs)
    #  G.add_nodes_from([0, 1, 2, 3, 4])
    #  G.add_weighted_edges_from([(1,2,3),(1,3,2)])

    #  G.add_edge('a', 'b', weight=0.6)
    #  G.add_edge('a', 'c', weight=0.2)
    #  G.add_edge('c', 'd', weight=0.1)
    #  G.add_edge('c', 'e', weight=0.7)
    #  G.add_edge('c', 'f', weight=0.9)
    #  G.add_edge('a', 'd', weight=0.3)

    elarge = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] > 0.5]
    esmall = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] <= 0.5]

    #  pos = nx.spring_layout(G)  # positions for all nodes
    pos = nx.random_layout(G)

    # nodes
    nx.draw_networkx_nodes(G, pos, node_size=200)

    # edges
    nx.draw_networkx_edges(G, pos, edgelist=elarge, width=1)
    nx.draw_networkx_edges(G,
                           pos,
                           edgelist=esmall,
                           width=1,
                           alpha=0.5,
                           edge_color='b',
                           style='dashed')

    # labels
    nx.draw_networkx_labels(G, pos, font_size=3, font_family='sans-serif')

    #  G.add_nodes_from(vertices)
    #  print(G.number_of_nodes())
    #  G.add_edge(1, 2)

    # print the adjacency list
    #  for line in nx.generate_adjlist(G):
    #  print(line)
    # write edgelist to grid.edgelist
    #  nx.write_edgelist(G, path="grid.edgelist", delimiter=":")
    # read edgelist from grid.edgelist
    #  H = nx.read_edgelist(path="grid.edgelist", delimiter=":")
    #  print(H)

    plt.axis('off')
    plt.show()
Exemplo n.º 11
0
def sistemaColoniaFormiga(grafo, mapa, origem, destino, lista_vertice,
                          coeficiente_evaporacao, iteracao, vel_iteracao,
                          formiga):

    rota_total = [('AP', 'PA'), ('AC', 'RO'), ('RO', 'AM'), ('AM', 'AC'),
                  ('RR', 'AM'), ('RR', 'PA'), ('PA', 'AM'), ('PA', 'TO'),
                  ('RS', 'SC'), ('SC', 'PR'), ('PR', 'MS'), ('PR', 'SP'),
                  ('SP', 'RJ'), ('RJ', 'MG'), ('MG', 'SP'), ('MS', 'MT'),
                  ('MT', 'RO'), ('MT', 'PA'), ('MT', 'GO'), ('GO', 'DF'),
                  ('DF', 'MG'), ('MG', 'GO'), ('GO', 'BA'), ('BA', 'TO'),
                  ('TO', 'GO'), ('TO', 'MA'), ('MA', 'PI'), ('PI', 'TO'),
                  ('BA', 'MG'), ('BA', 'ES'), ('BA', 'SE'), ('SE', 'AL'),
                  ('AL', 'PE'), ('PE', 'PI'), ('PE', 'PB'), ('PI', 'CE'),
                  ('CE', 'RN'), ('RN', 'PB'), ('PB', 'CE'), ('PB', 'PE'),
                  ('PA', 'MA'), ('PI', 'BA'), ('MG', 'MS'), ('MS', 'GO'),
                  ('MS', 'SP'), ('MG', 'ES'), ('RJ', 'ES')]

    pos = {
        'AC': (53.71, 229.51),
        'AL': (579.10, 233.28),
        'AM': (133.96, 158.04),
        'AP': (340.86, 60.23),
        'BA': (505.12, 274.66),
        'CE': (531.45, 160.55),
        'DF': (387.83, 351.83),
        'ES': (513.90, 390.02),
        'GO': (382.24, 306.00),
        'MA': (444.93, 161.80),
        'MG': (453.71, 369.95),
        'MT': (281.92, 283.47),
        'MS': (293.21, 392.52),
        'PA': (314.53, 163.06),
        'PE': (551.52, 208.20),
        'PB': (587.88, 198.17),
        'PI': (488.82, 200.67),
        'PR': (342.11, 467.76),
        'RN': (577.85, 168.07),
        'RO': (174.09, 262.12),
        'RR': (194.15, 53.97),
        'RS': (315.78, 544.25),
        'RJ': (473.77, 437.66),
        'SC': (374.71, 512.90),
        'SE': (567.82, 249.58),
        'SP': (383.49, 423.87),
        'TO': (397.29, 237.04)
    }

    lista_formigas = []
    for i in range(formiga):
        lista_formigas.append(str(i + 1))

    im = Image.open('back.png')

    fig1 = plt.figure()
    fig1.set_facecolor('#CCCCCC')

    # ax3 = fig1.add_subplot(2,2,2) # plot do gráfico1
    # ax3.set_title('Gráfico 2 das Formigas')
    # ax3.set_facecolor('#CCCCCC')
    # ax3.grid()
    # ax3.plot()

    ax2 = fig1.add_subplot(1, 2, 2)  # plot do gráfico1
    ax2.set_title('Gráfico 1 das Formigas ')
    ax2.set_facecolor('#CCCCCC')
    ax2.grid()
    ax2.plot()

    ax1 = fig1.add_subplot(1, 2, 1)  # plot do mapa
    ax1.set_title('Mapa de Colônia')
    ax1.set_xticklabels([])
    ax1.set_xlabel('Latitude')
    ax1.set_yticklabels([])
    ax1.set_ylabel('Longitude')
    ax1.set_facecolor('#CCCCCC')
    ax1.plot()

    nx.draw_networkx_nodes(mapa,
                           pos,
                           node_color='#6986a3',
                           alpha=0.8,
                           node_size=100)
    nx.draw_networkx_nodes(mapa,
                           pos,
                           nodelist=[origem],
                           node_color='green',
                           node_size=150,
                           alpha=0.9,
                           label='Origem')
    nx.draw_networkx_nodes(mapa,
                           pos,
                           nodelist=[destino],
                           node_color='red',
                           node_size=150,
                           alpha=0.9,
                           label='Destino')

    nx.draw_networkx_edges(mapa, pos, width=1.5, alpha=0.9, edge_color='white')

    nx.draw_networkx_labels(mapa, pos, font_size=6, font_color='white')

    # nx.draw_networkx_edge_labels(mapa, pos, font_size=5) # EXIBE OS PESOS DAS ARESTAS

    def refresh(x):
        for i in range(1):
            lista_caminho_formiga = []
            rota = []
            for j in range(formiga):
                list_caminho = []
                caminho(grafo, origem, destino, list_caminho)
                removeCiclo(list_caminho)
                lista_caminho_formiga.append(list_caminho)
            distanciaTotal = atualizaTaxaFeromonio(grafo,
                                                   lista_caminho_formiga,
                                                   coeficiente_evaporacao,
                                                   lista_vertice)

            ax2.plot_date(lista_formigas, distanciaTotal)
            ax2.bar(lista_formigas,
                    distanciaTotal,
                    color='white',
                    label='teste')
            ax2.plot(distanciaTotal, lw=0.02)
            # ax2.hist(distanciaTotal)

            print(distanciaTotal)
            for j in range(formiga):
                for k in range(len(lista_caminho_formiga[j]) - 1):
                    rota.append((lista_caminho_formiga[j][k],
                                 lista_caminho_formiga[j][k + 1]))
                nx.draw_networkx_edges(mapa,
                                       pos,
                                       edgelist=rota,
                                       width=2,
                                       alpha=0.01,
                                       edge_color='black')
                nx.draw_networkx_edges(mapa,
                                       pos,
                                       edgelist=rota_total,
                                       width=2.7,
                                       alpha=0.0095,
                                       edge_color='w')

        ax2.set_title('Comportamento das Formigas')
        ax2.set_ylabel('Distância (KM)')
        ax2.set_xticks(lista_formigas)
        ax2.set_xticklabels(distanciaTotal)
        ax2.set_xlabel('Distância Percorrida até o destino (KM)')

    plt.legend(loc='lower left')
    plt.imshow(im)
    ani1 = gif.FuncAnimation(fig1,
                             refresh,
                             iteracao,
                             interval=vel_iteracao,
                             repeat=False)
    plt.tight_layout()
    plt.show()
    def draw(self, node_type='', layout=''):
        """
        Draw graph with vertices, edges, and faces labeled by colored nodes and their integer indices
        corresponding to the qubit indices for the surface code
        """
        if not node_type in ['cycles', 'dict']:
            raise ValueError('node_type can be "cycles" or "dict"')

        if layout == 'spring':
            pos = nx.spring_layout(self.code_graph)
        if layout == 'spectral':
            pos = nx.spectral_layout(self.code_graph)
        if layout == 'planar':
            pos = nx.planar_layout(self.code_graph)
        if layout == 'shell':
            pos = nx.shell_layout(self.code_graph)
        if layout == 'circular':
            pos = nx.circular_layout(self.code_graph)
        if layout == 'spiral':
            pos = nx.spiral_layout(self.code_graph)
        if layout == 'random':
            pos = nx.random_layout(self.code_graph)
        # white nodes
        nx.draw_networkx_nodes(self.code_graph,
                               pos,
                               nodelist=list(self.alpha),
                               node_color='c',
                               node_size=500,
                               alpha=0.3)
        # vertex nodes
        nx.draw_networkx_nodes(self.code_graph,
                               pos,
                               nodelist=list(self.sigma),
                               node_color='b',
                               node_size=500,
                               alpha=0.6)
        # face nodes
        nx.draw_networkx_nodes(self.code_graph,
                               pos,
                               nodelist=list(self.phi),
                               node_color='r',
                               node_size=500,
                               alpha=0.6)
        # edges
        nx.draw_networkx_edges(self.code_graph, pos, width=1.0, alpha=0.5)

        labels = {}

        if node_type == 'cycles':
            '''
            label nodes the cycles of sigma, alpha, and phi
            '''
            for node in self.alpha_dict:
                # stuff = self.alpha_dict[node]
                labels[node] = f'$e$({node})'
            for node in self.sigma_dict:
                # something = self.sigma_dict[node]
                labels[node] = f'$v$({node})'
            for node in self.phi_dict:
                # something2 = self.phi_dict[node]
                labels[node] = f'$f$({node})'
            nx.draw_networkx_labels(self.code_graph, pos, labels, font_size=12)

        if node_type == 'dict':
            '''
            label nodes with v, e, f and indices given by node_dict corresponding to
            qubit indices of surface code
            '''

            for node in self.alpha_dict:
                # stuff = self.alpha_dict[node]
                labels[node] = f'$e$({self.alpha_dict[node]})'
            for node in self.sigma_dict:
                # something = self.sigma_dict[node]
                labels[node] = f'$v$({self.sigma_dict[node]})'
            for node in self.phi_dict:
                # something2 = self.phi_dict[node]
                labels[node] = f'$f$({self.phi_dict[node]})'
            nx.draw_networkx_labels(self.code_graph, pos, labels, font_size=12)

        # plt.axis('off')
        # plt.savefig("labels_and_colors.png") # save as png
        plt.show()  # display
distances = [[0 for i in range(no_of_cities)] for j in range(no_of_cities)]
pheromone = [[0 for i in range(no_of_cities)] for j in range(no_of_cities)]
ants = [Ant(randint(0, no_of_cities - 1), [], 0) for i in range(no_of_ants)]

for i in range(no_of_cities):
    for j in range(no_of_cities):
        if i != j and distances[i][j] == 0:
            distances[i][j] = randint(1, 20)
            distances[j][i] = distances[i][j]

# plot graph

graph = networkx.from_numpy_matrix(numpy.array(distances))
print(distances)
pos = nx.shell_layout(graph)
nx.draw_networkx_nodes(graph, pos, node_size=80)
nx.draw_networkx_labels(graph, pos, font_size=13, font_family='sans-serif')
labels = nx.get_edge_attributes(graph, 'weight')
nx.draw_networkx_edge_labels(graph, pos, edge_labels=labels, label_pos=0.61)

nx.draw(graph, pos)
plt.axis('off')
plt.show()
print()

# assign ants to cities

for i in range(no_of_ants):
    ants[i].visitedCitiesSet.append(ants[i].currentCity)

# start process
Exemplo n.º 14
0
#     if p in dist:
#         dist[p] += 1
#     else:
#         dist[p] = 1

# print('')
# print("length #paths")
# verts = dist.keys()
# for d in sorted(verts):
#     print('%s %d' % (d, dist[d]))

# print("radius: %d" % nx.radius(G))
# print("diameter: %d" % nx.diameter(G))
# print("eccentricity: %s" % nx.eccentricity(G))
# print("center: %s" % nx.center(G))
# print("periphery: %s" % nx.periphery(G))
# print("density: %s" % nx.density(G))

# #nx.draw(G, with_labels=True)

plt.figure(3, figsize=(13, 7))
# nx.draw_networkx(DG, pos, with_labels=True, node_size = 80)
nx.draw_networkx_nodes(DG, pos, node_size=20, node_color="blue")
nx.draw_networkx_edges(DG, pos, alpha=0.4, width=0.5)
nx.draw_networkx_labels(DG, pos, alpha=0.7, font_size=8)
plt.axis('off')
plt.show()

# print(DG.nodes())
# print(len(DG.nodes()))