Exemplo n.º 1
0
def vote(src,dest,intent):
    path = []
    confidence = 0

    if(intent == 0): #Good Guy. Non Malicious
        path = netshortestpath(src ,dest)
        confidence = get_weight(path)
        #path,confidence=BestBottleneckPath(src,dest)
        return (path,confidence)

    if(intent == 1):          #Evil Guy. malicious
        for paths in nx.all_simple_paths(graph_extern, src, dest):
            temp= get_weight(paths)
            if (temp>confidence):
                confidence = temp
                path = copy.deepcopy(paths)
        #return shortest path weigth -1

        return (path,(get_weight(netshortestpath(src, dest))-1))

    if(intent == 2):          #Good Guy. mis-configured
        for paths in nx.all_simple_paths(graph_extern, src, dest):
            temp= get_weight(paths)
            if (temp>confidence):
                confidence = temp
                path = copy.deepcopy(paths)
                break
        #return shortest path weigth -1
        return (path,confidence)
Exemplo n.º 2
0
def test_all_simple_paths_multigraph():
    G = nx.MultiGraph([(1, 2), (1, 2)])
    paths = nx.all_simple_paths(G, 1, 1)
    assert_equal(paths, [])
    nx.add_path(G, [3, 1, 10, 2])
    paths = nx.all_simple_paths(G, 1, 2)
    assert_equal(set(tuple(p) for p in paths), {(1, 2), (1, 2), (1, 10, 2)})
Exemplo n.º 3
0
def find_sg_multiple(G,inode_list,onode_list):
	#print 'Input node list:',inode_list
	#print 'Output node list:', onode_list
	#start = inode_list[0]
	oldreltypes = ['s','n','si','ni','sn','sni']
	for stop in onode_list:
		reltypes = []
		for start in inode_list:
			#print 'start is:', start, 'stop is:', stop
			roads = nx.all_simple_paths(G,start,stop)
			roads = list(roads)
			path_list = sorted(roads, lambda x,y: 1 if len(x)>len(y) else -1 if len(x)<len(y) else 0)
			if len(path_list)>1:
				if start==stop:
					route = path_list[1]
				else:
					route = path_list[0]
			else:
				continue
			prev_rel = 'sn'
			#print 'Looking at path',route
			for i in range(len(route)-1):
				etype = G[route[i]][route[i+1]]['edge_attr']
				rel = path.add(prev_rel,etype)
				if rel == None:
					#print 'Path cannot be added at',route[i],'to',route[i+1]
					srel = sg_add(prev_rel,etype)
					regs = G.predecessors(route[i+1])
					if len(regs)<=1:
						rel = None
					for regulator in regs:
						if regulator == route[i]:
							continue
						found = False
						for source in inode_list:
							if not nx.has_path(G,source,regulator):
								continue
							for p in nx.all_simple_paths(G,source,regulator):
								ptype = path.path_type(G,p)
								rtype = G[regulator][route[i+1]]['edge_attr']
								if sg_add(ptype,rtype) == srel:
									found = True
									break
							if found:
								break
						if found:
							continue
						else:
							rel = None
					rel = srel
				prev_rel = rel
			reltypes.append(rel)
		#print 'for end point',stop,'stored relationships are:',reltypes
		oldreltypes = list(set(reltypes) & set(oldreltypes))
	return oldreltypes
Exemplo n.º 4
0
def test_all_simple_paths_on_non_trivial_graph():
    ''' you may need to draw this graph to make sure it is reasonable '''
    G = nx.path_graph(5, create_using=nx.DiGraph())
    G.add_edges_from([(0, 5), (1, 5), (1, 3), (5, 4), (4, 2), (4, 3)])
    paths = nx.all_simple_paths(G, 1, [2, 3])
    assert_equal(set(tuple(p) for p in paths), {
        (1, 2), (1, 3, 4, 2), (1, 5, 4, 2), (1, 3), (1, 2, 3), (1, 5, 4, 3),
        (1, 5, 4, 2, 3)})
    paths = nx.all_simple_paths(G, 1, [2, 3], cutoff=3)
    assert_equal(set(tuple(p) for p in paths), {
        (1, 2), (1, 3, 4, 2), (1, 5, 4, 2), (1, 3), (1, 2, 3), (1, 5, 4, 3)})
    paths = nx.all_simple_paths(G, 1, [2, 3], cutoff=2)
    assert_equal(set(tuple(p) for p in paths), {(1, 2), (1, 3), (1, 2, 3)})
Exemplo n.º 5
0
def get_routes(origin, destin, mode, days, hours, weights=WEIGHTS):

    key = (origin, destin, mode, days, hours)
    if key in ROUTES:
        routes = ROUTES[key]
    else:
        start = time()
        graph = get_graph(mode, hours)
        ncity = NUMCITIES[days, hours]
        print('INFO: Graph was built in {0:.3f}s'
              .format(time() - start))

        start = time()

        routes = list(nx.all_simple_paths(graph, source=origin, target=destin,
                                          cutoff=ncity))
        if not routes:
            while not routes and ncity < days:
                print hours
                if hours == 4:
                    hours = 7
                    graph = get_graph(mode, hours)
                    ncity = NUMCITIES[days, hours]
                elif hours == 7:
                    hours = 10
                    graph = get_graph(mode, hours)
                    ncity = NUMCITIES[days, hours]
                else:
                    ncity += 1
                routes = list(nx.all_simple_paths(graph, source=origin, target=destin,
                                                  cutoff=ncity))
        else:
            roundway = origin == destin
            # print 'MAX: ', days, hours, '->', max((len(r) - roundway for r in routes))
            if hours > 4:
                routes.extend(get_routes(origin, destin, mode, days, 4, weights)[0])
                # print 'MAX: ', days, hours, '->', max((len(r) - roundway for r in routes))
            elif hours > 7:
                routes.extend(get_routes(origin, destin, mode, days, 7, weights)[0])
                # print 'MAX: ', days, hours, '->', max((len(r) - roundway for r in routes))
        print('INFO: {} routes were calculated in {:.3f}'
              .format(len(routes), time() - start))

        start = time()
        routes = filter_routes(routes)
        print('INFO: {} routes were selected in {:.3f}'
              .format(len(routes), time() - start))
        ROUTES[key] = routes


    return routes, hours
Exemplo n.º 6
0
def find_directed_paths(request, project_id=None):
    """ Given a set of two or more skeleton IDs, find directed paths of connected neurons between them, for a maximum inner path length as given (i.e. origin and destination not counted). A directed path means that all edges are of the same kind, e.g. presynaptic_to. """

    sources = set(int(v) for k,v in request.POST.iteritems() if k.startswith('skeleton_ids['))
    if len(sources) < 2:
        raise Exception('Need at least 2 skeleton IDs to find directed paths!')

    path_length = int(request.POST.get('n_circles', 1))
    cursor = connection.cursor()
    mins, relations = _clean_mins(request, cursor, int(project_id))
    presynaptic_to = relations['presynaptic_to']
    graph = nx.DiGraph()
    next_sources = sources
    all_sources = sources
    length = path_length

    def rev_args(fn):
        def f(arg1, arg2):
            fn(arg2, arg1)
        return f

    # Create a graph by growing the sources
    while length > 0 and next_sources:
        length -= 1
        next_circles = _next_circle(next_sources, cursor)
        next_sources = set()
        for skid1, c in next_circles.iteritems():
            for relationID, targets in c.iteritems():
                threshold = mins[relationID]
                add_edge = graph.add_edge if relationID == presynaptic_to else rev_args(graph.add_edge)
                for skid2, count in targets.iteritems():
                    if count < threshold:
                        continue
                    add_edge(skid1, skid2)
                    next_sources.add(skid2)
        next_sources = next_sources - all_sources
        all_sources = all_sources.union(next_sources)

    # Find all directed paths between all pairs of inputs
    unique = set()
    for start, end in combinations(sources, 2):
        for paths in [nx.all_simple_paths(graph, start, end, path_length + 1),
                      nx.all_simple_paths(graph, end, start, path_length + 1)]:
            for path in paths:
                for node in path:
                    unique.add(node)

    skeleton_ids = tuple(unique - sources)
    return HttpResponse(json.dumps([skeleton_ids, _neuronnames(skeleton_ids, project_id)]))
Exemplo n.º 7
0
Arquivo: ca.py Projeto: arvin580/jcvi
def unitigs(args):
    """
    %prog unitigs best.edges

    Reads Celera Assembler's "best.edges" and extract all unitigs.
    """
    p = OptionParser(unitigs.__doc__)
    p.add_option("--maxerr", default=2, type="int", help="Maximum error rate")
    opts, args = p.parse_args(args)

    if len(args) != 1:
        sys.exit(not p.print_help())

    bestedges, = args
    G = read_graph(bestedges, maxerr=opts.maxerr, directed=True)
    H = nx.Graph()
    intconv = lambda x: int(x.split("-")[0])
    for k, v in G.iteritems():
        if k == G.get(v, None):
            H.add_edge(intconv(k), intconv(v))

    nunitigs = nreads = 0
    for h in nx.connected_component_subgraphs(H, copy=False):
        st = [x for x in h if h.degree(x) == 1]
        if len(st) != 2:
            continue
        src, target = st
        path = list(nx.all_simple_paths(h, src, target))
        assert len(path) == 1
        path, = path
        print "|".join(str(x) for x in path)
        nunitigs += 1
        nreads += len(path)
    logging.debug("A total of {0} unitigs built from {1} reads.".format(nunitigs, nreads))
Exemplo n.º 8
0
 def _singleSegment(self, nodes):
     # disjoint line or a bent line at 45 degrees appearing as dichtonomous tree but an error due to
     # improper binarization, so remove them and do not account for statistics
     listOfPerms = list(itertools.combinations(nodes, 2))
     if type(nodes[0]) == int:
         modulus = [[start - end] for start, end in listOfPerms]
         dists = [abs(i[0]) for i in modulus]
     else:
         dims = len(nodes[0])
         modulus = [[start[dim] - end[dim] for dim in range(0, dims)] for start, end in listOfPerms]
         dists = [sum(modulus[i][dim] * modulus[i][dim] for dim in range(0, dims)) for i in range(0, len(modulus))]
     if len(list(nx.articulation_points(self._subGraphSkeleton))) == 1 and set(dists) != 1:
         # each node is connected to one or two other nodes which are not a distance of 1 implies there is a
         # one branch point with two end points in a single dichotomous tree"""
         for sourceOnTree, item in listOfPerms:
             if nx.has_path(self._subGraphSkeleton, sourceOnTree, item) and sourceOnTree != item:
                 simplePaths = list(nx.all_simple_paths(self._subGraphSkeleton, source=sourceOnTree, target=item))
                 simplePath = simplePaths[0]
                 countBranchNodesOnPath = sum([1 for point in simplePath if point in nodes])
                 if countBranchNodesOnPath == 2:
                     curveLength = self._getLengthAndRemoveTracedPath(simplePath)
                     self.isolatedEdgeInfoDict[sourceOnTree, item] = curveLength
     else:
         # each node is connected to one or two other nodes implies it is a line,
         endPoints = [k for (k, v) in self._nodeDegreeDict.items() if v == 1]
         sourceOnLine = endPoints[0]
         targetOnLine = endPoints[1]
         simplePath = nx.shortest_path(self._subGraphSkeleton, source=sourceOnLine, target=targetOnLine)
         curveLength = self._getLengthAndRemoveTracedPath(simplePath)
         self.isolatedEdgeInfoDict[sourceOnLine, targetOnLine] = curveLength
Exemplo n.º 9
0
def linkpath_incidence(graph):
    """
    get link-path incidence matrix

    Parameters
    ----------
    graph: graph object

    Return value
    ------------
    C: matrix of incidence link-path
    """
    nnode, nlink = graph.numnodes, graph.numlinks
    npair = len(graph.ODs.keys())

    G = nx.DiGraph()
    G.add_nodes_from(graph.nodes.keys())
    G.add_edges_from([(key[0],key[1]) for key in graph.links.keys()])
    indcol = -1
    # C = np.ones((nlink, npair*nlink))
    entries, I, J = [], [], []
    for OD in graph.ODs.itervalues():
        for nodes_on_path in nx.all_simple_paths(G, OD.o, OD.d):
            graph.add_path_from_nodes(nodes_on_path)
            indcol += 1
            for u,v,route in graph.links.keys():
                indrow = graph.indlinks[(u,v,route)]
                for i in xrange(len(nodes_on_path)-1):
                    if np.array_equal([u,v], [nodes_on_path[i], nodes_on_path[i+1]]):
                        entries.append(1.0); I.append(indrow), J.append(indcol)
    C = spmatrix(entries, I, J, (nlink,indcol+1))
    return C
Exemplo n.º 10
0
def test_shortest_simple_paths():
    G = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted")
    paths = nx.shortest_simple_paths(G, 1, 12)
    assert_equal(next(paths), [1, 2, 3, 4, 8, 12])
    assert_equal(next(paths), [1, 5, 6, 7, 8, 12])
    assert_equal([len(path) for path in nx.shortest_simple_paths(G, 1, 12)],
                 sorted([len(path) for path in nx.all_simple_paths(G, 1, 12)]))
Exemplo n.º 11
0
def pathOD_incidence(graph, haspath=False):
    """
    get path-OD incidence matrix

    Parameters
    ----------
    graph: graph object
    haspath: if True, simple has already been set before

    Return value
    ------------
    C: matrix of incidence path-OD
    """
    nnode, nlink = graph.numnodes, graph.numlinks
    npair = len(graph.ODs.keys())

    G = nx.DiGraph()
    G.add_nodes_from(graph.nodes.keys())
    G.add_edges_from([(key[0],key[1]) for key in graph.links.keys()])
    if not haspath:
        for OD in graph.ODs.itervalues():
            for nodes_on_path in nx.all_simple_paths(G, OD.o, OD.d):
                graph.add_path_from_nodes(nodes_on_path)
    npath = len(graph.paths)
    entries, I, J = [], [], []
    for OD in graph.ODs.itervalues():
        u = OD.o; v=OD.d
        indcol = graph.indods[(u,v)]
        for path in graph.paths.iterkeys():
            if (u == path[0]) and (v == path[-1]):
                indrow = graph.indpaths[path]
                entries.append(1.0); I.append(indrow), J.append(indcol)
    C = spmatrix(entries, I, J, (npath, npair))
    return C
Exemplo n.º 12
0
def write_dcbusspec2(G,buslist,genlist):
    """Writes specifications for dc bus unpowered conditions
    
    Parameters
    ----------
    G : networkX graph

    buslist : list of all dc buses
       
    genlist : list of all generators

    """
    paths = []
    temp = []
    edges = []
    D = copy.deepcopy(G)
    gens2 = copy.deepcopy(gens)
    for i in buslist:
        f.write('guarantees += '"'"'&\\n\\t[](!((0=1)')
        for j in genlist:
            gens2.remove(j)
            D.remove_nodes_from(gens2)
            for path in nx.all_simple_paths(D,i,j):
                paths.append(path)
                f.write(' | (B' + str(i) + str(j) + str(len(paths)-1)+')')
            paths = []
            gens2 = copy.deepcopy(gens)
            D = copy.deepcopy(G)
        f.write(') -> (b'+str(i)+'=0))'"'"'\n')
Exemplo n.º 13
0
def write_sat_dcbusprop2(G,buslist, genlist):
    H = copy.deepcopy(G)
    for i in buslist:
        f.write('(assert (=> (not (or ')
        for j in genlist:
            gen_temp = copy.deepcopy(gens)
            gen_temp.remove(j)
            H.remove_nodes_from(gen_temp)
            for path in nx.all_simple_paths(H,i,j):
                f.write(' (and')
                for k in range(1,len(path)):
                    if path[k] in gens:
                        f.write(' (= g'+str(path[k])+' true)')
                    elif path[k] in busac:
                        f.write(' (= b'+str(path[k])+' true)')
                    elif path[k] in null:
                        f.write(' (= b'+str(path[k])+' true)')
                    elif path[k] in rus:
                        f.write(' (= r'+str(path[k])+' true)')
                for m in range(0,len(path)-1):
                    if path[m] in busdc and path[m+1] in rus:
                        pass
                    elif path[m] in rus and path[m+1] in busdc:
                        pass
                    elif path[m] < path[m+1]:
                        f.write(' (= c'+str(path[m])+str(path[m+1])+' true)')
                    elif path[m+1] < path[m]:
                        f.write(' (= c'+str(path[m+1])+str(path[m])+' true)')
                f.write(')')
            H = copy.deepcopy(G)
        f.write(')) (= b'+str(i)+' false)))\n')
Exemplo n.º 14
0
    def _generate_path(self, topo, src_mac, dst_mac, src_port,
                       dst_port, src_dpid, dst_dpid):
        """Generate path method."""
        net = nx.DiGraph(data=topo)
        net.add_node(src_mac)
        net.add_node(dst_mac)
        net.add_edge(int(src_dpid), src_mac, {'port': int(src_port)})
        net.add_edge(src_mac, int(src_dpid))
        net.add_edge(int(dst_dpid), dst_mac, {'port': int(dst_port)})
        net.add_edge(dst_mac, int(dst_dpid))

        target_path = None
        try:
            path = nx.shortest_path(net, src_mac, dst_mac)
            path2 = nx.shortest_path(net, src_mac, dst_mac)
            path2.pop()
            path2.pop(0)
            list_load = check_switch_load(path2, data_collection.switch_stat, constant.load_limitation)
            if len(list_load) > 0:
                # print 'lui', list_load
                all_paths = nx.all_simple_paths(net, src_mac, dst_mac)
                path_list = list(all_paths)
                target_path_index, target_path_cost = calculate_least_cost_path(path_list, data_collection.switch_stat, net)
                target_path = path_list[target_path_index]
            else:
                target_path = path
            print 'tarrr', target_path
        except Exception:
            target_path = None
        return target_path
Exemplo n.º 15
0
def dcbusspec(G,busno,gen):
    """Creates specifications for when DC bus gets powered
    
    Parameters
    ----------
    G : networkX graph

    busno : node
       dc bus
       
    gen : node
       generator

    """
    paths = []
    C = []
    temp = []
    edges = []
    D = copy.deepcopy(G)
    gens2 = copy.deepcopy(gens)
    gens2.remove(gen)
    D.remove_nodes_from(gens2)
    for path in nx.all_simple_paths(D,busno,gen,cutoff=None):
        paths.append(path)
    for j in range(0,len(paths)):
        f.write('guarantees += '"'"'&\\n\\t[]((B'+str(busno)+str(gen)+str(j)+') -> (b'+str(busno)+'=1))'"'"'\n')
Exemplo n.º 16
0
    def get_maximal_path_length(self):
        """
        Get the maximal path length from all simple paths that traverses the projection graph from
        one leave node to another.

        .. note::
           This measure is sensitive to the resolution of a projection
           the same way the length of a coastline is sensitive to the resoltuion.

        .. warning::
            Whether this code will stay in the library or not depends
            on future evaluation of the usefulness of this and similar descriptors.

        """
        import networkx as nx
        maxl = 0
        for i, node1 in enumerate(self.proj_graph.nodes()):
            for j, node2 in enumerate(self.proj_graph.nodes()):
                if j <= i:
                    continue
                all_paths = nx.all_simple_paths(self.proj_graph, node1, node2)
                for path in all_paths:
                    l = self._get_path_length(path)
                    if l > maxl:
                        maxl = l
        return maxl
Exemplo n.º 17
0
def GetLocalBridge(g, topic, windowsize, date):
    '''
    通过遍历边,对是否为捷径进行判断,将跨度最大的前10名存放在数据库中
    '''
    localbridge = []
    edges_list = g.edges()
    for (a,b) in edges_list:
        a_n = set(g.neighbors(a))
        b_n = set(g.neighbors(b))
        l_a_n = len(a_n)
        l_b_n = len(b_n)
        l_ab_n = len(a_n & b_n)
        if (l_a_n!=1)&(l_b_n!=1)&(l_ab_n==0):
            paths_list = nx.all_simple_paths(g, source=a, target=b)
            span_ab = 0
            len_path = 0
            for path in paths_list:
                len_path += 1
                if len(path) > span_ab:
                    span_ab = len(path)
            if len_path == 1:
                span_ab = 10000 # 当去除了仅有的那条边之后没有其他路径能够连接ab,则使跨度为10000
            
            localbridge.append((a, b, span_ab, l_a_n, l_b_n))
            
    SaveLocalBridge(topic, date, windowsize, localbridge) # 存放localbridge数组
Exemplo n.º 18
0
 def genPaths(self):
     """
     Generates our list of possible paths between two nodes in the network.
     This routine takes advantage of the all_simple_paths feature of networkx.
     I attempted to use the Floyd Warshall algorithm to reconstruct the paths,
     but was unsucessful. Luckily, open source scientific software that solves
     the problem at hand exists
     """
     # check whether the user has network x
     try:
         import networkx as nx
     # tell them how to get it if they don't have it
     except:
         tkMessageBox.showerror('Missing Package','In order to use this feature you must install NetworkX from http://networkx.lanl.gov\nUse \'sudo easy_install networkx\' to install the package')
     
     # make G our graph
     G = nx.Graph()
     
     # add our edges to the graph
     G.add_edges_from(self.edges)
     
     # generate our paths using all_simple_paths
     # http://networkx.lanl.gov/reference/generated/networkx.algorithms.simple_paths.all_simple_paths.html
     paths = nx.all_simple_paths(G, source=int(self.vEntry1.get()), target=int(self.vEntry2.get()), cutoff=self.n)
     # bring it back to list format so it can be used
     self.paths = list(paths)
Exemplo n.º 19
0
def find_same_level_regions(region):
    # Load graph
    graph = load_graph()
    if not graph:
        logger.error("Can't trace multiple regions: Region call graph not available.\n\
                      Run cere profile.\n\
                      Tracing region {0}".format(region))
        return

    # Find region node id
    region_node = get_region_id(region, graph)

    #Find roots
    roots = [n for n,d in graph.in_degree().items() if d==0]

    #Compute for every nodes, the max distance from himself to each root
    max_path_len = {}
    for root in roots:
        for n, d in graph.nodes(data=True):
            if n not in max_path_len: max_path_len[n]=0
            #Get every paths from the current root to the node
            paths = list(nx.all_simple_paths(graph, root, n))
            #Keep the max length path
            for path in paths:
                if len(path)-1 > max_path_len[n]:
                    max_path_len[n] = len(path)-1

    #Keep region which have the same depth than the requested region
    for n, p in max_path_len.iteritems():
        if p == max_path_len[region_node]:
            yield graph.node[n]['_name']
Exemplo n.º 20
0
    def find_simple_path(self, nodes):
        if len(nodes) <= 1:
            return []
        elif len(nodes) == 2:
            if len([1 for n in nodes if self._degree(n) == 1]) == 2:
                return sorted(list(nodes))
            else:
                return []

        # if this set of nodes has a single path through it,
        # there should be no nodes of degree 3 or more. We want
        # to know the start and end points, which are the nodes
        # of degree 1
        degree_one_nodes = set()
        for node in nodes:
            degree = self._degree(node)
            if degree > 2:
                return []
            elif degree == 1:
                degree_one_nodes.add(node)

        assert len(degree_one_nodes) == 2
        node1, node2 = list(degree_one_nodes)
        path = list(networkx.all_simple_paths(self.graph, node1, node2))
        assert len(path) == 1
        if self.simple_path_is_consistent(path[0]):
            # not really necessary, but makes unit testing easier
            if path[0][0] < path[0][-1]:
                return path[0]
            else:
                return path[0][::-1]
        else:
            return []
Exemplo n.º 21
0
def CFEC(s,t,mip):
    R = nx.all_simple_paths(mip, s, t, cutoff=8)
    proximity = 0.0
    for r in R:
        PathWeight = mip.degree(r[0])*(PathProb(r,mip))  #check whether the degree makes a difference, or is it the same for all paths??
        proximity = proximity + PathWeight
    return proximity
Exemplo n.º 22
0
	def do_all_paths(self,args):
		"Display all paths between two nodes"

		arglist = args.split(" ")

		if arglist[0] and arglist[1]:
			#Grab the args
			node1=arglist[0].upper()
			node2=arglist[1].upper()
		else:
			print "[-] Error: Args Needed"

		#ensure they exist
		if G.has_node(node1) and G.has_node(node2):
			if (nx.has_path(G,node1,node2)):
				print "[*] All Paths from %s to %s" %(node1,node2)
				#Get the shortest paths
				paths = nx.all_simple_paths(G, node1, node2)

				#Print all paths in pretty format
				for p in paths:
					outputpath = "[*] "
					for n in p:
						outputpath+=n+" -> "
					print outputpath[:-4]
			else:
				print "[-] No path exist :("
		else:
			print "[-] Node %s or %s does not exist :(" % (node1, node2)
Exemplo n.º 23
0
def number_of_lp_lattice():
 
    for D in [2]:   
        myfile = open(str(D)+'number_lp_lattice', 'w')
        myfile.write('N_side' + '\t' + 'N'+ '\t'+ 'lp length' +  '\t'+ 'no. lp'+ '\n')
        start_time = time.time()
        for N_side in range(10,16,1):
            N = N_side**2

    #        model = models.COd(2, N)
            model = models.square_lattice_model(D, N_side)
            DAG = model[0]
            extremes = model[1]
            tr_DAG = tr.trans_red(DAG)
            lp = dl.lpd(tr_DAG, extremes[1], extremes[0])
            length_lp = lp[2]
            
            j=0
            paths_list = list(nx.all_simple_paths(tr_DAG, extremes[1], extremes[0], cutoff=length_lp+1))
            for i in range(len(paths_list)):
                if len(paths_list[i])==length_lp+1:
                    j+=1
    
            myfile.write(str(N_side) + '\t' + str(N) +'\t' + str(length_lp)+ '\t' + str(j) + '\n')
            print 'done', N_side
        elapsed = time.time() - start_time
        
        print 'finished.',D,'Dimension. Time elapsed = ',elapsed
        
    return
Exemplo n.º 24
0
def get_long_walk_score(node1, node2, graph):
	
	edge_removed = False
	if graph.has_edge(node1, node2):
		edge_removed = True
		edge_data = graph[node1][node2]
		graph.remove_edge(node1, node2)

	all_simple_paths = nx.all_simple_paths(graph, source=node1, target=node2, cutoff=PATH_LENGTH_CUTOFF)
	
	output = 0
	num_paths = 0
	for path in all_simple_paths:
		path_score = 1
		for loc1,loc2 in zip(*(path[i:] for i in [0,1])): # for every connected pair
			dat = graph[loc1][loc2]
			num_lines = dat["first_user_num_lines"]+dat["second_user_num_lines"]
			path_score *= (1 - 1/float(num_lines+1) )
 		output = max(output,path_score)
		num_paths += 1
    
	if edge_removed:                                   
		graph.add_edge(node1, node2, attr_dict=edge_data)

	return output	
Exemplo n.º 25
0
def get_ontology_paths(basic_ontology, from_type, to_obj):
    """
    type-to-type ontology path

    :param ontology:
    :param from_type:
    :param to_obj:
    :return:
    """
    assert from_type.name in basic_ontology.types
    assert to_obj.type.name in basic_ontology.types


    graph = basic_ontology.ontology_graph.copy()
    assert isinstance(graph, nx.DiGraph)

    for function in basic_ontology.functions.values():
        if function.valence > 1:
            graph.remove_node(function.id)

    """
    if from_type is to_obj:
        paths = [cycle for cycle in nx.simple_cycles(basic_ontology.ontology_graph) if from_type.id in cycle]
    """
    if not nx.has_path(graph, from_type.id, to_obj.type.id):
        paths = []
    elif from_type == to_obj.type:
        paths = [[from_type.id]]

    else:
        paths = list(nx.all_simple_paths(graph, from_type.id, to_obj.type.id))

    path_dict = {key: OntologyPath(basic_ontology, [basic_ontology.get_by_id(id_) for id_ in path] + [to_obj], key)
                 for key, path in enumerate(paths)}
    return path_dict
Exemplo n.º 26
0
    def slice_graph(graph, node, frontier, include_frontier=False):
        """
        Generate a slice of the graph from the head node to the given frontier.

        :param networkx.DiGraph graph: The graph to work on.
        :param node: The starting node in the graph.
        :param frontier: A list of frontier nodes.
        :param bool include_frontier: Whether the frontier nodes are included in the slice or not.
        :return: A subgraph.
        :rtype: networkx.DiGraph
        """

        subgraph = networkx.DiGraph()

        for frontier_node in frontier:
            for simple_path in networkx.all_simple_paths(graph, node, frontier_node):
                for src, dst in zip(simple_path, simple_path[1:]):
                    if include_frontier or (src not in frontier and dst not in frontier):
                        subgraph.add_edge(src, dst)
        if not list(subgraph.nodes):
            # HACK: FIXME: for infinite loop nodes, this would return an empty set, so we include the loop body itself
            # Make sure this makes sense (EDG thinks it does)
            if (node, node) in graph.edges:
                subgraph.add_edge(node, node)
        return subgraph
def least_overlapping_backup_path(G):
    for n, nattr in G.nodes(data=True):
        pp = nattr['primary_paths']
        bp = nattr['backup_paths']
        bnh = nattr['backup_next_hop']
        print "\nCalculating Node = %d" % n
        for m, mattr in G.nodes(data=True):
            if m == n:
                pp.append([])
                bp.append([])
                bnh[m] = None
            else:
                ppx = nx.shortest_path(G, source=n, target=m)
                pp.append(ppx)
                pm = nx.all_simple_paths(G, source=n, target=m)
                # random.shuffle(pm)
                bp.append(get_single_backup(ppx, pm))
                bnh[m] = (bp[m][1])
                sys.stdout.write('.')
                # print "Path Matrix of %d to %d = %s" % (n, m, pm)
            # print "Primary_path of %d to %d = %s" % (n, m, pp[m])
            # print "Backup_path of %d to %d = %s" % (n, m, bp[m])
            # print "Backup_next_hop of %d to %d = %.0f" % (n, m, bnh[m])

        nattr['primary_paths'] = pp
        nattr['backup_paths'] = bp
        nattr['backup_next_hop'] = bnh
Exemplo n.º 28
0
    def get_all_simple_path(self, source, dest):
        """Get all simple path from a point to an other.

        Return
        ------
        Return a networkX list of path
        """
        source_node = None
        dest_node = None

        if source:
            for i in self.subnet_list:
                if Ip.ListContains([i], source):
                    source_node = i
                    break

        if dest:
            for i in self.subnet_list:
                if Ip.ListContains([i], dest):
                    dest_node = i
                    break

        if not source or not dest:
            for node in self.graph.nodes(data=True):
                if node[1]['object'].marker_type == 'from':
                    source_node = node[0]
                if node[1]['object'].marker_type == 'to':
                    dest_node = node[0]

        if not source_node or not self.multidigraph.has_node(source_node)\
                or not dest_node or not self.multidigraph.has_node(dest_node):
            raise

        return nx.all_simple_paths(self.multidigraph, source_node, dest_node)
def get_assemblie(G,read_db):
    contigs={}
    if len(G.nodes())>1:
        starting_nodes=[n for n in G.nodes() if G.in_degree(n)==0]
        ending_nodes=[n for n in G.nodes() if G.out_degree(n)==0]

        paths=[]
        for start_node in starting_nodes:
            for end_node in ending_nodes:
                two_nodes_paths=nx.all_simple_paths(G,start_node,end_node)

                for path in two_nodes_paths:
                    print path
                    contig_key='contig_'+':'.join(path)
                    contigs[contig_key]=read_db[path[0]]
                    for idx in range(1,len(path)):
                        prev,current=path[idx-1],path[idx]
                        seq=read_db[current]
                        #pdb.set_trace()
                        overlap=int(G[prev][current]["label"])
                        contigs[contig_key]+=seq[overlap:]
                    #contigs.append(contig)
    else:
        contig_key='contig_'+G.nodes()[0]
        contigs[contig_key]=read_db[G.nodes()[0]]

    return contigs
Exemplo n.º 30
0
def _prune_states(K, graph, source, sink):
    """
    Removes cycles and redundant nodes (that are not reachable from source)
    from the subgraph of graph defined by the nodes in K.
    
    """
    
    # Create a subgraph with the nodes now in K
    # Find and remove cycles by deleting the edge between 
    # the second to last node and the last node of the cycle,
    # thus keeping nodes that may be important 
    # to the trust calculation.
    subgraph = graph.subgraph(K)
    cycles = nx.simple_cycles(subgraph)
    if cycles:
        for cycle in cycles:
            subgraph.remove_edges_from([(cycle[-2], cycle[-1])])
            
    # Get all paths from source to sink without cycles and redundant nodes
    simple_paths = list(nx.all_simple_paths(G=graph, source=source, target=sink))
    relevant_nodes = set(chain.from_iterable(simple_paths))
            
    # Remove nodes no longer used (not in simple_paths)
    for n in K:
        if n not in relevant_nodes:
            subgraph.remove_node(n)
            
    return subgraph
            digraph.remove_edge('origin', 'clk')
        if search:
            index = search.group(1)
            digraph.remove_edge('d' + str(index), 'q' + str(index))
            d.append('d' + str(index))
            q.append('q' + str(index))

    file = open("Timing_Paths_SD1.txt", "w")
    file1 = open("CriticalPath_SD8.txt", "w")

    file1.write("Longest Path: " + str(path) + "\n\n")
    file1.write("Delay: " + str(distance))

    file.write("\nInput to Output Paths: \n ")
    for path in nx.all_simple_paths(digraph,
                                    source='origin',
                                    target='endpoint'):
        #print(path)
        out = str(path).replace(",", "->")
        out = out.replace("[", "")
        out = out.replace("]", "")
        out = out.replace("'", " ")
        file.write("\n" + out + "\n")

    if not nx.all_simple_paths(digraph, source='origin', target='endpoint'):
        file.write("NONE \n")

    file.write("\nReg to Output Paths: \n")
    for i in q:
        for path in nx.all_simple_paths(digraph, source=i, target='endpoint'):
            out = str(path).replace(",", "->")
Exemplo n.º 32
0
ff = open(f,'wr+')
ffr = open(rf,'wr+')

edgeNum = 1000000
edgeCount = 0
Grev = G.reverse()

elist = G.edges()      #find those edges
G_int = nx.convert_node_labels_to_integers(G,label_attribute='old_name')  #transfer node names to numbers
intnlist = G_int.nodes()

for e in elist:
    Gmini=nx.DiGraph()     #initiate a mini subgraph

#Now begin to calculate paths from src to dst 
    path = nx.all_simple_paths(G, source=e[0], target=e[1], cutoff = MaxHop)   #filter out all paths from src to dst with in MaxHop
    levels = nx.get_edge_attributes(G, 'level')

    for p in path:
        ff.write("{0}\n".format(p))
        for i in range(0,len(p)-1):
            ff.write("{0},{1}\n".format(p[i],p[i+1]))
            #Use the paths obtained above to form a sub graph
            Gmini.add_edge(p[i],p[i+1],level=levels[(p[0], p[1])],color='red')  

    if Gmini:
        Nnum = Gmini.number_of_nodes()
        Enum = Gmini.number_of_edges()
        GminiR = Gmini.reverse()
        
        #transfer edge attributes of 1 hop ground truth to opinion
Exemplo n.º 33
0
def count_paths(G, edges):
    num_paths = 0
    for v1, v2 in edges:
        for _ in nx.all_simple_paths(G, v1, v2):
            num_paths += 1
    return num_paths
Exemplo n.º 34
0
 def get_all_paths_to(self, target_node):
     linear_paths = []
     for unlabeled_path in nx.all_simple_paths(self.atoms, self.start_node,
                                               target_node):
         self.add_previously_unseen_plans(linear_paths, unlabeled_path)
     return linear_paths
Exemplo n.º 35
0
import function as fn
import csv
import sys

#Initialize g to graph and read from csv and lists that will hold paths
g = nx.Graph()
all_paths = []
s = []
the_graph = sys.argv[1]
g = fn.input_csv(g, the_graph)

#Ask for user inputs
A = int(input("Enter A: "))
B = int(input("Enter B: "))
C = float(input("Enter C: "))
D = int(input("Enter D: "))
Color = input("Enter Color: ")

#Iterate through all paths between A to B in g and store into a list
for path in nx.all_simple_paths(g, A, B):
    all_paths.append(path)
#Iterate through all valid paths attained and find those that satisfy predicates
for i in all_paths:
    if(fn.is_path(i,A,B) and fn.total_weight(i,C,g) and fn.color(i,Color,D,g)):
        s.append(i)
        
fn.output_csv(s)



Exemplo n.º 36
0
def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
    # pathreqlist is a list of Path_request objects
    # disjunctions_list a list of Disjunction objects
    
    # given a network, a list of requests with the set of disjunction features between
    # request, the function computes the set of path satisfying : first the disjunction
    # constraint and second the routing constraint if the request include an explicit 
    # set of elements to pass through.
    # the algorithm used allows to specify disjunction for demands not sharing source or
    # destination.
    # a request might be declared as disjoint from several requests
    # it is a iterative process:
    # first computes a list of all shortest path (this may add computation time)
    # second elaborate the set of path solution for each synchronization vector
    # third select only the candidates that satisfy all synchronization vectors they belong to
    # fourth apply route constraints : remove candidate path that do not satisfy the constraint
    # fifth select the first candidate among the set of candidates.
    # the example network used in comments has been added to the set of data tests files

    # define the list to be returned
    path_res_list = []

    # all disjctn must be computed at once together to avoid blocking
    #         1     1
    # eg    a----b-----c
    #       |1   |0.5  |1
    #       e----f--h--g
    #         1  0.5 0.5
    # if I have to compute a to g and a to h 
    # I must not compute a-b-f-h-g, otherwise there is no disjoint path remaining for a to h
    # instead I should list all most disjoint path and select the one that have the less
    # number of commonalities
    #     \     path abfh  aefh   abcgh 
    #      \___cost   2     2.5    3.5
    #   path| cost  
    #  abfhg|  2.5    x      x      x
    #  abcg |  3      x             x
    #  aefhg|  3      x      x      x
    # from this table abcg and aefh have no common links and should be preferred 
    # even they are not the shortest paths

    # build the list of pathreqlist elements not concerned by disjunction
    global_disjunctions_list = [e for d in disjunctions_list for e in d.disjunctions_req ]
    pathreqlist_simple = [e for e in pathreqlist if e.request_id not in global_disjunctions_list]
    pathreqlist_disjt = [e for e in pathreqlist if e.request_id in global_disjunctions_list]

    # use a mirror class to record path and the corresponding requests
    class Pth:
        def __init__(self, req, pth, simplepth):
            self.req = req
            self.pth = pth
            self.simplepth = simplepth

    # step 1
    # for each remaining request compute a set of simple path
    allpaths = {}
    rqs = {}
    simple_rqs = {}
    simple_rqs_reversed = {}
    for pathreq in pathreqlist_disjt :
        all_simp_pths = list(all_simple_paths(network,\
            source=next(el for el in network.nodes() if el.uid == pathreq.source),\
            target=next(el for el in network.nodes() if el.uid == pathreq.destination),\
            cutoff=80))
        # sort them in km length instead of hop
        # all_simp_pths = sorted(all_simp_pths, key=lambda path: len(path))
        all_simp_pths = sorted(all_simp_pths, key=lambda \
            x: sum(network.get_edge_data(x[i],x[i+1])['weight'] for i in range(len(x)-2)))
        # reversed direction paths required to check disjunction on both direction
        all_simp_pths_reversed = []
        for pth in all_simp_pths:
            all_simp_pths_reversed.append(find_reversed_path(pth,network))
        rqs[pathreq.request_id] = all_simp_pths 
        temp =[]
        for p in all_simp_pths :
            # build a short list representing each roadm+direction with the first item
            # start enumeration at 1 to avoid Trx in the list
            s = [e.uid for i,e in enumerate(p[1:-1]) \
                if (isinstance(e,Roadm) | (isinstance(p[i],Roadm) ))] 
            temp.append(s)
            # id(s) is unique even if path is the same: two objects with same 
            # path have two different ids
            allpaths[id(s)] = Pth(pathreq,p,s)
        simple_rqs[pathreq.request_id] = temp
        temp =[]
        for p in all_simp_pths_reversed :
            # build a short list representing each roadm+direction with the first item
            # start enumeration at 1 to avoid Trx in the list
            temp.append([e.uid for i,e in enumerate(p[1:-1]) \
                if (isinstance(e,Roadm) | (isinstance(p[i],Roadm) ))] )
        simple_rqs_reversed[pathreq.request_id] = temp
    # step 2 
    # for each set of requests that need to be disjoint
    # select the disjoint path combination

    candidates = {}
    for d in disjunctions_list :
        dlist = d.disjunctions_req.copy()
        # each line of dpath is one combination of path that satisfies disjunction
        dpath = []
        for i,p in enumerate(simple_rqs[dlist[0]]):
            dpath.append([p])
            # allpaths[id(p)].d_id = d.disjunction_id
        # in each loop, dpath is updated with a path for rq that satisfies 
        # disjunction with each path in dpath
        # for example, assume set of requests in the vector (disjunction_list) is  {rq1,rq2, rq3}
        # rq1  p1: abfhg
        #      p2: aefhg
        #      p3: abcg
        # rq2  p8: bf
        # rq3  p4: abcgh
        #      p6: aefh
        #      p7: abfh
        # initiate with rq1
        #  dpath = [[p1]
        #           [p2]
        #           [p3]]
        #  after first loop:
        #  dpath = [[p1 p8]
        #           [p3 p8]]
        #  since p2 and p8 are not disjoint
        #  after second loop:
        #  dpath = [ p3 p8 p6 ]
        #  since p1 and p4 are not disjoint 
        #        p1 and p7 are not disjoint
        #        p3 and p4 are not disjoint
        #        p3 and p7 are not disjoint

        for e1 in dlist[1:] :
            temp = []
            for j,p1 in enumerate(simple_rqs[e1]):
                # allpaths[id(p1)].d_id = d.disjunction_id
                # can use index j in simple_rqs_reversed because index 
                # of direct and reversed paths have been kept identical
                p1_reversed = simple_rqs_reversed[e1][j]
                # print(p1_reversed)
                # print('\n\n')
                for k,c in enumerate(dpath) :
                    # print(f' c: \t{c}')
                    temp2 = c.copy()
                    all_disjoint = 0
                    for p in c :
                        all_disjoint += isdisjoint(p1,p)+ isdisjoint(p1_reversed,p)
                    if all_disjoint ==0:
                        temp2.append(p1)
                        temp.append(temp2)
                            # print(f' coucou {e1}: \t{temp}')
            dpath = temp
        # print(dpath)
        candidates[d.disjunction_id] = dpath

    # for i in disjunctions_list  :
    #     print(f'\n{candidates[i.disjunction_id]}')

    # step 3
    # now for each request, select the path that satisfies all disjunctions
    # path must be in candidates[id] for all concerned ids
    # for example, assume set of sync vectors (disjunction groups) is
    #   s1 = {rq1 rq2}   s2 = {rq1 rq3}
    #   candidate[s1] = [[p1 p8]
    #                    [p3 p8]]
    #   candidate[s2] = [[p3 p6]]
    #   for rq1 p3 should be preferred


    for pathreq in pathreqlist_disjt:
        concerned_d_id = [d.disjunction_id for d in disjunctions_list if pathreq.request_id in d.disjunctions_req]
        # for each set of solution, verify that the same path is used for the same request
        candidate_paths = simple_rqs[pathreq.request_id]
        # print('coucou')
        # print(pathreq.request_id)
        for p in candidate_paths :
            iscandidate = 0
            for sol in concerned_d_id :
                test = 1
                # for each solution test if p is part of the solution
                # if yes, then p can remain a candidate
                for i,m in enumerate(candidates[sol]) :
                    if p in m:
                        if allpaths[id(m[m.index(p)])].req.request_id == pathreq.request_id :
                            test = 0
                            break
                iscandidate += test
            if iscandidate != 0:
                for l in concerned_d_id :
                    for m in candidates[l] :
                        if p in m :
                            candidates[l].remove(m)

#    for i in disjunctions_list  :
#        print(i.disjunction_id)
#        print(f'\n{candidates[i.disjunction_id]}')

    # step 4 apply route constraints : remove candidate path that do not satisfy the constraint
    # only in  the case of disjounction: the simple path is processed in request.compute_constrained_path
    # TODO : keep a version without the loose constraint
    for d in disjunctions_list  :
        temp = []
        for j,sol in enumerate(candidates[d.disjunction_id]) :
            testispartok = True
            for i,p in enumerate(sol) :
                # print(f'test {allpaths[id(p)].req.request_id}')
                # print(f'length of route {len(allpaths[id(p)].req.nodes_list)}')
                if allpaths[id(p)].req.nodes_list :
                    # if p does not containt the ordered list node, remove sol from the candidate
                    # except if this was the last solution: then check if the constraint is loose or not
                    if not ispart(allpaths[id(p)].req.nodes_list, p) : 
                        # print(f'nb of solutions {len(temp)}')
                        if j < len(candidates[d.disjunction_id])-1 :
                            msg = f'removing {sol}'
                            logger.info(msg)
                            testispartok = False
                            #break
                        else:
                            if 'loose' in allpaths[id(p)].req.loose_list:
                                logger.info(f'Could not apply route constraint'+
                                    f'{allpaths[id(p)].req.nodes_list} on request {allpaths[id(p)].req.request_id}')
                            else :
                                logger.info(f'removing last solution from candidate paths\n{sol}')
                                testispartok = False
            if testispartok :
                temp.append(sol)
        candidates[d.disjunction_id] = temp

    # step 5 select the first combination that works
    pathreslist_disjoint = {}
    for d in disjunctions_list  :
        test_sol = True
        while test_sol:
            # print('coucou')
            if candidates[d.disjunction_id] :
                for p in candidates[d.disjunction_id][0]:
                    if allpaths[id(p)].req in pathreqlist_disjt: 
                        # print(f'selected path :{p} for req {allpaths[id(p)].req.request_id}')
                        pathreslist_disjoint[allpaths[id(p)].req] = allpaths[id(p)].pth
                        pathreqlist_disjt.remove(allpaths[id(p)].req)
                        candidates = remove_candidate(candidates, allpaths, allpaths[id(p)].req, p)
                        test_sol = False
            else:
                msg = f'No disjoint path found with added constraint'
                logger.critical(msg)
                print(f'{msg}\nComputation stopped.')
                # TODO in this case: replay step 5  with the candidate without constraints
                exit()
    
    # for i in disjunctions_list  :
    #     print(i.disjunction_id)
    #     print(f'\n{candidates[i.disjunction_id]}')

    # list the results in the same order as initial pathreqlist        
    for req in pathreqlist :
        req.nodes_list.append(req.destination)
        # we assume that the destination is a strict constraint
        req.loose_list.append('strict')
        if req in pathreqlist_simple:
            path_res_list.append(compute_constrained_path(network, req))
        else:
            path_res_list.append(pathreslist_disjoint[req])
    return path_res_list
Exemplo n.º 37
0
def compute_constrained_path(network, req):
    trx = [n for n in network.nodes() if isinstance(n, Transceiver)]
    roadm = [n for n in network.nodes() if isinstance(n, Roadm)]
    edfa = [n for n in network.nodes() if isinstance(n, Edfa)]
    anytypenode = [n for n in network.nodes()]

    source = next(el for el in trx if el.uid == req.source)

    # This method ensures that the constraint can be satisfied without loops
    # except when it is not possible : eg if constraints makes a loop
    # It requires that the source, dest and nodes are correct (no error in the names)
    destination = next(el for el in trx if el.uid == req.destination)
    nodes_list = []
    for n in req.nodes_list :
        # for debug excel print(n)
        nodes_list.append(next(el for el in anytypenode if el.uid == n))
    # nodes_list contains at least the destination
    if nodes_list is None :
        msg = f'Request {req.request_id} problem in the constitution of nodes_list: should at least include destination'
        logger.critical(msg)
        exit()
    if req.nodes_list[-1] != req.destination:
        msg = f'Request {req.request_id} malformed list of nodes: last node should be destination trx'
        logger.critical(msg)
        exit()

    if len(nodes_list) == 1  :
        try :
            total_path = dijkstra_path(network, source, destination, weight = 'weight')
            # print('checking edges length is correct')
            # print(shortest_path_length(network,source,destination))
            # print(shortest_path_length(network,source,destination,weight ='weight'))
            # s = total_path[0]
            # for e in total_path[1:]:
            #     print(s.uid)
            #     print(network.get_edge_data(s,e))
            #     s = e
        except NetworkXNoPath:
            msg = f'\x1b[1;33;40m'+f'Request {req.request_id} could not find a path from {source.uid} to node : {destination.uid} in network topology'+ '\x1b[0m'
            logger.critical(msg)
            print(msg)
            total_path = []        
    else : 
        all_simp_pths = list(all_simple_paths(network,source=source,\
            target=destination, cutoff=120))
        candidate = []
        for p in all_simp_pths :
            if ispart(nodes_list, p) :
                # print(f'selection{[el.uid for el in p if el in roadm]}')
                candidate.append(p)
        # select the shortest path (in nb of hops) -> changed to shortest path in km length
        if len(candidate)>0 :
            # candidate.sort(key=lambda x: len(x))
            candidate.sort(key=lambda x: sum(network.get_edge_data(x[i],x[i+1])['weight'] for i in range(len(x)-2)))
            total_path = candidate[0]
        else:
            if req.loose_list[req.nodes_list.index(n)] == 'loose':
                print(f'\x1b[1;33;40m'+f'Request {req.request_id} could not find a path crossing {nodes_list} in network topology'+ '\x1b[0m')
                print(f'constraint ignored')
                total_path = dijkstra_path(network, source, destination, weight = 'weight')
            else:
                msg = f'\x1b[1;33;40m'+f'Request {req.request_id} could not find a path crossing {nodes_list}.\nNo path computed'+ '\x1b[0m'
                logger.critical(msg)
                print(msg)
                total_path = []

    # obsolete method: this does not guaranty to avoid loops or correct results
    # Here is the demonstration :
    #         1     1
    # eg    a----b-----c
    #       |1   |0.5  |1
    #       e----f--h--g
    #         1  0.5 0.5
    # if I have to compute a to g with constraint f-c
    # result will be a concatenation of: a-b-f and f-b-c and c-g
    # which means a loop. 
    # if to avoid loops I iteratively suppress edges of the segmenst in the topo
    # segment 1 = a-b-f
    #               1
    # eg    a    b-----c
    #       |1         |1
    #       e----f--h--g
    #         1  0.5 0.5
    # then 
    # segment 2 = f-h-g-c
    #               1
    # eg    a    b-----c
    #       |1          
    #       e----f  h  g
    #         1  
    # then there is no more path to g destination
    #
    # 
    # total_path = [source]

    # for n in req.nodes_list:
    #     try :
    #         node = next(el for el in trx if el.uid == n)
    #     except StopIteration:
    #         try:
    #             node = next(el for el in anytypenode if el.uid == n)
    #         except StopIteration:
    #             try:
    #                 # TODO this test is not giving good results: full name of the 
    #                 # amp is required to avoid ambiguity on the direction
    #                 node = next(el for el in anytypenode 
    #                     if n in el.uid)
    #             except StopIteration:
    #                 msg = f'could not find node : {n} in network topology: \
    #                     not a trx, roadm, edfa, fiber or fused element'
    #                 logger.critical(msg)
    #                 raise ValueError(msg)
    #     # extend path list without repeating source -> skip first element in the list
    #     try:
    #         # to avoid looping back: use an alternate graph were current path edges and vertex are suppressed

    #         total_path.extend(dijkstra_path(network, source, node)[1:])
    #         source = node
    #     except NetworkXNoPath:
    #         if req.loose_list[req.nodes_list.index(n)] == 'loose':
    #             print(f'could not find a path from {source.uid} to loose node : {n} in network topology')
    #             print(f'node  {n} is skipped')
    #         else:
    #             msg = f'could not find a path from {source.uid} to node : {n} in network topology'
    #             logger.critical(msg)
    #             print(msg)
    #             total_path = []

    return total_path
Exemplo n.º 38
0
##    print "ERROR"

#guess my algorithm actually starts here, sorry about that
#Part of the list this generates isn't quite correct, I'll try working on it some more if I have time
#Should be something like:
node_list = ['Fly', 'E', 'D', 'O', 'F', 'C', 'P', 'N', 'Q', 'M',
             'T', 'R', 'L', 'K', 'S', 'B', 'G', 'H', 'A', 'J', 'Spider']
node_count = np.zeros(len(node_list))#number of paths from 'Fly' to itself should be 0

for i in range(1, len(node_list)):
    if G.has_edge(node_list[i], node_list[0]):#if has edge to goal, increment number of paths for that node
        node_count[i] += 1
    #Check to see if has edge from any or the nodes that we've already solved for number of paths to the goal
    for j in range(i, 0, -1):
        #If there is an edge, then the number of paths from that node is equal to itself plus the number of paths it has an edge with
        if G.has_edge(node_list[i], node_list[j]):
            node_count[i] += node_count[j]
print node_list
print node_count
print 'Total number of paths from Spider to Fly: ', int(node_count[i]), ' paths'

###############################################################################
#Answer I should get
paths = nx.all_simple_paths(G, source='Spider', target='Fly', cutoff=21)
#print len(list(paths))
if (int(node_count[i]) == len(list(paths))):
    print 'Correct!'



Exemplo n.º 39
0
G.add_node(5, entrance=True)
G.add_node(7, entrance=True)

print('''
  [1--2--3
      |  |
      6--4--5]
      |
      7]
''')

# add path attributes
entrances = {v for v in nx.get_node_attributes(G, 'entrance')}
start_and_goals = itertools.combinations(entrances, 2)
for src, tgt in start_and_goals:
    for p in nx.all_simple_paths(G, src, tgt):
        G.add_path(p)


# b(i,j,k)= \begin{cases}
#   1 & ( v_i , v_j ) \in p_k \\
#   0 & otherwise
# \end{cases}
def ispartof(edge: tuple, path: mynx.Graph.Path) -> bool:
    for i, j in zip(path.data[::1], path.data[1::1]):
        if set(edge) == {i, j}:
            return True
    else:
        return False

Exemplo n.º 40
0
 def paths(self, rda_graph):
     return nx.all_simple_paths(rda_graph, self.source, self.subject)
Exemplo n.º 41
0
def toRoom9():
	G.add_edges_from(roomDoors)
	myRoom = designateRoom(x_ant,y_ant)
	searchFlag = True
	roomWas = False
	nodes = G.nodes()
	if (9 not in nodes):
		print 'I don\'t know where is room number 9.'
		return
	paths = nx.all_simple_paths(G,myRoom,9)
	paths = list(paths)
	shortPath = 1000
	counter = 0
	pathWithout7 = []
	numberPath = len(paths)
	# Case when agent don't know about door leading to room 9
	if(numberPath == 0):
		print 'I don\'t know how to get room 9 yet.'
		return
	for x in range(0,numberPath):
		l=len(paths[x])
		if shortPath > l:
			shortPath = l
			position = x
	if(paths[0][0]==7):
		print 'I\'m in room 7. The shortest path to room 9 is:' + '-'.join(str(x) for x in paths[position][1:-1])
		return
	shortPath = 1000
	for p in range(0,numberPath):
		searchFlag = True
		pat=paths[p]
		for r in pat:
			if(r == 7):
				searchFlag = False
		if(searchFlag == True):
			counter += 1
			roomWas = True
			pathWithout7.append(pat)
			if counter == 1:
				print '\nNo, I don\'t need to pass room 7.'
			pathLength = len(pat)
			if(pathLength < shortPath):
				shortPath = pathLength
				position = p
			if 9 == pat[0]:
				print 'I\'m in room 9 ! '
				return
			elif (pathLength == 2):
				print 'I can go straight to room 9, through door between rooms %d and %d'%(pat[0],pat[1])
			else:
				if(counter > 1):
					print 'or through room: ' + '-'.join(str(x) for x in pat[1:-1])
				else:
					print 'To go to room 9 I can go through room: ' + '-'.join(str(x) for x in pat[1:-1])

	if(not pathWithout7):
		print 'I must pass room 7.'
	else:
		length = len(pathWithout7)
		lengths = [len(x) for x in pathWithout7]
		if(not (all(a==lengths[0] for a in lengths))):	
			if length > 1:
				if shortPath == 2:
					print 'But the shortest path is going straight through door between rooms %d and %d'%(paths[position][0],paths[position][1])
				elif shortPath == 3:
					print'But the shortest path is go through room ' + str(paths[position][1])
				else:
					print 'But the shortest path is ' + '-'.join(str(x) for x in paths[position][1:-1])
Exemplo n.º 42
0
 def op(self, graph, a: NodeSpec, b: NodeSpec):
     return [
         ids_to_nodes(graph, i)
         for i in nx.all_simple_paths(graph.gnx, a["id"], b["id"])
     ]
Exemplo n.º 43
0
def simple_path((x,y), edges, nodes, pos_dict, dep_dict):
    """
    Returns the simple dependency paths between x and y, using the simple paths \
    in the graph of dependency tree.
    :param edges: the edges of the graph
    :param nodes: the nodes of the graph
    :return: the simple paths between x and y in which each node is normalized by lemma/pos/dep/dist
    """
    # Gets edges without indices from edges
    edges_with_idx = [k for k in edges.keys()]
    # Builds graph
    G = nx.Graph()
    G.add_nodes_from(nodes)
    G.add_edges_from(edges_with_idx)
    # Finds paths from x to y and paths from y to x
    x_to_y_paths = [path for path in nx.all_simple_paths(G,source=x, target=y)]
    y_to_x_paths = [path for path in nx.all_simple_paths(G,source=y, target=x)]
    # Normalizes simple paths
    normalized_simple_paths = []
    for path in x_to_y_paths:
        _paths = simple_path_normalization(path, edges, pos_dict, dep_dict)
        if _paths is not None:
            normalized_simple_paths.append(_paths)
    for path in y_to_x_paths:
        _paths = simple_path_normalization(path, edges, pos_dict, dep_dict)
        if _paths is not None:
            normalized_simple_paths.append(_paths)
    
    return normalized_simple_paths

def simple_path_normalization(path, edges, pos_dict, dep_dict):
Exemplo n.º 44
0
#plt.show()

link_list = []

for k in range(len(edges_list)):
    link_list0 = []
    for i in range(7):
        link_list0.append(edges_list[k] + (i, ))
    link_list.append(link_list0)

SD_path = []
SR_pathLink = []
for i in range(len(SR_pair)):
    path0 = []
    for path in nx.all_simple_paths(G,
                                    source=SR_pair[i][0],
                                    target=SR_pair[i][1]):
        path_edges = []
        for j in range(len(path) - 1):
            path_edges.append((path[j], path[j + 1]))
        path0.append(path_edges)
    SD_path.append(path0)

CoreSetup()
for i in range(len(bypassEdges)):
    Link = bypassEdges[i]
    for j in range(7):
        if (len(Link[j]) > 0):
            if (Link[j][0][0] == edges_list[i][1]):

                Out_bypassEdges[i][j] = Link[j]
Exemplo n.º 45
0
def runRound(edges, start, end, cost, tax, biases, N, debug=False):
    # For each edge there is flow * c(flow). These are the edgeFuncs. The global
    #   optimizer minimizes the sum of these functions

    initial = True

    preferences = {}
    edgeResults = {}

    # Add ids to every edge so that biases can be indexed
    for i, (n1, n2, edgeData) in enumerate(edges):
        edgeData['id'] = i

    G = networkx.DiGraph()
    G.add_edges_from(edges)

    #print G.edge
    #print G.edge[0]

    for i in range(N):
        for n1 in G.edge:
            for n2 in G.edge[n1]:
                preferences[(i, n1, n2)] = biases[G.edge[n1][n2]['id']](i)

    #zero the graph edges to start
    for n1 in G.edge:
        for n2 in G.edge[n1]:
            G.edge[n1][n2]['f'] = 0.0

    # we need to preserve the balance of edges at the end of the round. becuas I should change my mind just because the flow changed...
    # If I change my mind, remove myself from the previous
    # for r in range(R):
    aCur = {}  # create
    aPrev = None
    ct = 0
    history = []
    backtrack = False
    totalc = 0.0
    edgeResults = {}
    maxIters = 10
    while ((initial or aCur != aPrev) and ct < maxIters):
        ct += 1
        if aCur in history:
            backtrack = True
        history.append(dict(aCur))
        aPrev = dict(aCur)

        order = range(N)
        numpy.random.shuffle(order)
        for i in order:
            if i in aPrev:
                for n1, n2 in aCur[i]:
                    G.edge[n1][n2]['f'] -= 1.0 / N

            for n1 in G.edge:
                for n2 in G.edge[n1]:
                    G.edge[n1][n2]['c'] = cost[G.edge[n1][n2]['t']](G.edge[n1][n2]['f']) + \
                                            tax[G.edge[n1][n2]['t']](G.edge[n1][n2]['f']) + \
                                            preferences[(i, n1, n2)]

            paths = networkx.all_simple_paths(G, source=start, target=end)

            pathCosts = []

            for path in paths:
                c = 0
                edges = zip(path[:-1], path[1:])

                for n0, n1 in edges:
                    c += G.edge[n0][n1]['c']

                pathCosts.append((c, edges))

            pEdge = sorted(pathCosts, key=lambda x: x[0])[0][1]

            aCur[i] = pEdge

            for n1, n2 in aCur[i]:
                G.edge[n1][n2]['f'] += 1.0 / N

            totalc = 0.0
            edgeResults = {}
            for n1, n2 in set(G.edges()):
                edgeData = G.edge[n1][n2]
                key = (n1, n2)

                edgeResults[key] = edgeData['f'], edgeData['t']
                totalc += edgeData['f'] * cost[edgeData['t']](edgeData['f'])

            if debug:
                for (n1, n2), (f, t) in edgeResults.items():
                    print u"Edge ({0}, {1}), type {2}, flow {3}".format(
                        n1, n2, t, f)

                print '----'
                print u"Total cost: {0}".format(numpy.mean(totalc))
                print '****'

        initial = False

        if debug:
            print 'Total iterations:', ct

    if debug:
        if backtrack:
            print "Game is not potential game"
        else:
            print "No backtracking detected"

    return totalc, edgeResults, backtrack, (ct < maxIters)
Exemplo n.º 46
0
    source='origin',
    target='dest',
    edge_attr=True,
)
# detail documentation of networkx https://networkx.github.io/documentation/networkx-1.7/reference/generated/networkx.drawing.nx_pylab.draw_networkx.html
FG.nodes()
FG.edges()
nx.draw_networkx(
    FG, with_labels=True, node_size=600, node_color='y'
)  # Quick view of the Graph. As expected we see 3 very busy airports

nx.algorithms.degree_centrality(
    FG
)  # Notice the 3 airports from which all of our 100 rows of data originates
nx.density(FG)  # Average edge density of the Graphs
nx.average_shortest_path_length(
    FG)  # Average shortest path length for ALL paths in the Graph
nx.average_degree_connectivity(
    FG
)  # For a node of degree k - What is the average of its neighbours' degree?

# Let us find all the paths available
for path in nx.all_simple_paths(FG, source='JAX', target='DFW'):
    print(path)
# Let us find the dijkstra path from JAX to DFW.
# You can read more in-depth on how dijkstra works from this resource - https://courses.csail.mit.edu/6.006/fall11/lectures/lecture16.pdf
dijpath = nx.dijkstra_path(FG, source='JAX', target='DFW')
dijpath
# Let us try to find the dijkstra path weighted by airtime (approximate case)
shortpath = nx.dijkstra_path(FG, source='JAX', target='DFW', weight='air_time')
shortpath
Exemplo n.º 47
0
def dcbusprop(G, source, target):
    """Creates discrete properties for power status of dc buses

    Parameters
    ----------
    G : networkX graph

    source : node
       dc bus

    target : node
       generator

    """
    temp = []
    edges = []
    D = copy.deepcopy(G)
    gens2 = copy.deepcopy(gens)
    gens2.remove(target)
    D.remove_nodes_from(gens2)
    paths = []
    C = []
    for path in nx.all_simple_paths(D, source, target, cutoff=None):
        paths.append(path)
    for p in range(0, len(paths)):
        for i in range(0, len(paths[p]) - 1):
            if paths[p][i] in busdc and paths[p][i + 1] in rus:
                pass
            elif paths[p][i] in rus and paths[p][i + 1] in busdc:
                pass
            else:
                C.append((paths[p][i], paths[p][i + 1]))
        f.write('disc_props['
                "'"
                'B' + str(source) + str(target) + str(p) + "'"
                '] = '
                "'")
        if paths[p][1] in gens:
            f.write('(g' + str(paths[p][1]) + '=1)')
        elif paths[p][1] in busac:
            f.write('(b' + str(paths[p][1]) + '=1)')
        elif paths[p][1] in rus:
            f.write('(ru' + str(paths[p][1]) + '=1)')
        elif paths[p][1] in busdc:
            f.write('(b' + str(paths[p][1]) + '=1)')
        elif paths[p][1] in null:
            f.write('(b' + str(paths[p][1]) + '=1)')
        else:
            pass
        for j in range(2, len(paths[p])):
            if paths[p][j] in gens:
                f.write(' & (g' + str(paths[p][j]) + '=1)')
            elif paths[p][j] in busac:
                f.write(' & (b' + str(paths[p][j]) + '=1)')
            elif paths[p][j] in rus:
                f.write(' & (ru' + str(paths[p][j]) + '=1)')
            elif paths[p][1] in busdc:
                f.write(' & (b' + str(paths[p][1]) + '=1)')
            elif paths[p][1] in null:
                f.write(' & (b' + str(paths[p][1]) + '=1)')
            else:
                pass
        for k in range(0, len(C)):
            if C[k][0] < C[k][1]:
                f.write(' & (c' + str(C[k][0]) + str(C[k][1]) + '=1)')
            else:
                f.write(' & (c' + str(C[k][1]) + str(C[k][0]) + '=1)')
        f.write("'" '\n')
        C = []
def odd_even_fault_tolerance_metric(network_size, routing_type):

    turns_health_2d_network = {
        "N2W": False,
        "N2E": False,
        "S2W": False,
        "S2E": False,
        "W2N": False,
        "W2S": False,
        "E2N": False,
        "E2S": False
    }
    Config.ag.topology = '2DMesh'
    Config.ag.x_size = network_size
    Config.ag.y_size = network_size
    Config.ag.z_size = 1
    Config.RotingType = routing_type

    all_odd_evens_file = open(
        'Generated_Files/Turn_Model_Eval/' + str(network_size) + "x" +
        str(network_size) + '_OE_metric_' + Config.RotingType + '.txt', 'w')
    all_odd_evens_file.write("TOPOLOGY::" + str(Config.ag.topology) + "\n")
    all_odd_evens_file.write("X SIZE:" + str(Config.ag.x_size) + "\n")
    all_odd_evens_file.write("Y SIZE:" + str(Config.ag.y_size) + "\n")
    all_odd_evens_file.write("Z SIZE:" + str(Config.ag.z_size) + "\n")
    ag = copy.deepcopy(AG_Functions.generate_ag())
    shmu = SystemHealthMonitoringUnit.SystemHealthMonitoringUnit()
    turns_health = copy.deepcopy(turns_health_2d_network)
    shmu.setup_noc_shm(ag, turns_health, False)
    noc_rg = copy.deepcopy(
        Routing.generate_noc_route_graph(ag, shmu, [], False, False))

    classes_of_doa_ratio = []
    turn_model_class_dict = {}
    tm_counter = 0

    for turn_model in all_odd_even_list:

        sys.stdout.write("\rnumber of processed turn models: %i " % tm_counter)
        sys.stdout.flush()
        tm_counter += 1
        link_dict = {}
        turn_model_index = all_odd_even_list.index(turn_model)
        turn_model_odd = turn_model[0]
        turn_model_even = turn_model[1]

        update_rg_odd_even(ag, turn_model_odd, turn_model_even, shmu, noc_rg)

        number_of_pairs = len(ag.nodes()) * (len(ag.nodes()) - 1)

        all_paths_in_graph = []
        for source_node in ag.nodes():
            for destination_node in ag.nodes():
                if source_node != destination_node:
                    if is_destination_reachable_from_source(
                            noc_rg, source_node, destination_node):
                        if Config.RotingType == 'MinimalPath':
                            shortest_paths = list(
                                all_shortest_paths(
                                    noc_rg,
                                    str(source_node) + str('L') + str('I'),
                                    str(destination_node) + str('L') +
                                    str('O')))
                            paths = []
                            for path in shortest_paths:
                                minimal_hop_count = manhattan_distance(
                                    source_node, destination_node)
                                if (len(path) / 2) - 1 <= minimal_hop_count:
                                    paths.append(path)
                                    all_paths_in_graph.append(path)
                        else:
                            paths = list(
                                all_simple_paths(
                                    noc_rg,
                                    str(source_node) + str('L') + str('I'),
                                    str(destination_node) + str('L') +
                                    str('O')))
                            all_paths_in_graph += paths
                        link_dict = find_similarity_in_paths(link_dict, paths)

        metric = 0
        for item in link_dict.keys():
            metric += link_dict[item]

        if Config.RotingType == 'MinimalPath':
            doa = degree_of_adaptiveness(ag, noc_rg,
                                         False) / float(number_of_pairs)
            metric = 1 / (float(metric) / len(ag.edges()))
            metric = float("{:3.3f}".format(metric))
        else:
            doa_ex = extended_degree_of_adaptiveness(
                ag, noc_rg, False) / float(number_of_pairs)
            metric = 1 / (float(metric) / len(ag.edges()))
            metric = float("{:3.3f}".format(metric))

        if metric not in classes_of_doa_ratio:
            classes_of_doa_ratio.append(metric)
        if metric in turn_model_class_dict.keys():
            turn_model_class_dict[metric].append(turn_model_index)
        else:
            turn_model_class_dict[metric] = [turn_model_index]
        # return SHMU and RG back to default
        clean_rg_from_odd_even(ag, turn_model_odd, turn_model_even, shmu,
                               noc_rg)

    all_odd_evens_file.write("classes of metric" + str(classes_of_doa_ratio) +
                             "\n")
    all_odd_evens_file.write("----------" * 3 + "\n")
    all_odd_evens_file.write("turn models of class" + "\n")
    for item in sorted(turn_model_class_dict.keys()):
        all_odd_evens_file.write(
            str(item) + " " + str(turn_model_class_dict[item]) + "\n")

    all_odd_evens_file.write("----------" * 3 + "\n")
    all_odd_evens_file.write("distribution of turn models" + "\n")
    for item in sorted(turn_model_class_dict.keys()):
        temp_list = []
        for tm in turn_model_class_dict[item]:
            turn_model = all_odd_even_list[tm]
            number_of_turns = len(turn_model[0]) + len(turn_model[1])
            temp_list.append(number_of_turns)
        all_odd_evens_file.write(
            str(item) + " " + str(temp_list.count(8)) + " " +
            str(temp_list.count(9)) + " " + str(temp_list.count(10)) + " " +
            str(temp_list.count(11)) + " " + str(temp_list.count(12)) + "\n")
    all_odd_evens_file.close()
    return turn_model_class_dict
Exemplo n.º 49
0
    def divide(self, subnet, subnet_tree=None, t=None, h=None):
        """Attempt to divide subnet

        Parameters
        ----------
        subnet : (int, int)
            subnet to attempt division
        subnet_tree : networkx.DiGraph, optional
            subnet hierarchy tree with additional labels
            if not given, it will be calculated automatically

        t : int, default None
            division parameter,
            used in similarity checks

        h : int, default None
            division parameter,
            used as a depth threshold

            if None - depth is unlimited

        Returns
        -------
        success : bool
            True if factorization was sucessful
            False if it cannot be done

        See Also
        --------
        similarity

        """
        h = h if h is not None else math.inf
        subnet_tree = subnet_tree if subnet_tree is not None else self.subnet_tree(
        )
        s, e = subnet

        def division_equivalence(node1, node2):
            return self.similarity(self, node1, e, node2, e, t=t)

        deep_nodes = set()
        close_nodes = set()

        for node in self.between_nodes(s, e, edge_cases=False):
            if nx.shortest_path_length(self, s, node) > h:
                deep_nodes.add(node)
            elif self.out_degree(node) > 1:
                close_nodes.add(node)

        classes, partition = equivalence_partition(close_nodes,
                                                   division_equivalence)

        # remove child nodes from classes
        # otherwise we may merge child with parent (extremely illegal)
        for eq_class in classes:
            for curr_node in list(eq_class):
                if any(curr_node != node
                       and nx.has_path(self, node, curr_node)
                       for node in eq_class):
                    eq_class.remove(curr_node)
                    partition.pop(curr_node)

        valid_close = []
        valid_deep = []
        paths = list(nx.all_simple_paths(self, s, e))
        for eq_class in classes:
            # ignore classes with less then 2 nodes to merge
            if len(eq_class) < 2:
                continue

            flag = False
            deep_part = set()
            for path in paths:
                flag = False
                for node in path:
                    if node in eq_class:
                        flag = True
                        break

                    if node in deep_nodes:
                        flag = True
                        deep_part.add(node)
                        break

                # no path through node in eq_class or through deep node
                if not flag:
                    break

            if flag:
                valid_close.append(eq_class)
                valid_deep.append(deep_part)

        if not valid_close:
            return None

        # print(close_nodes, deep_nodes, classes, partition, valid_close, valid_deep, '\n', sep='\n')

        # if many valid sets, select ones with smallest total amount of elements
        valids = zip(valid_close, valid_deep)
        valid_close, valid_deep = min(
            valids, key=lambda c_d: len(c_d[0]) + len(c_d[1]))

        first_node = valid_close.pop()
        net = Pnet(self)

        left_net = net.subcopy(s, first_node)
        right_net = net.subcopy(first_node, e)

        for node in valid_close:
            left_net = left_net.compose(net, other_start=s, other_end=node)
            right_net = right_net.compose(net, other_start=node, other_end=e)
            if right_net is None:
                return None

        new_subnet = Pnet.sequence_join(left_net, right_net)
        net.replace(new_subnet, s, e)

        return net
Exemplo n.º 50
0
def pull_contigs_from_component(assembly,
                                component,
                                min_edge_trim_weight,
                                assembly_max_paths,
                                log=DEVNULL):
    """
    builds contigs from the a connected component of the assembly DeBruijn graph

    Args:
        assembly (DeBruijnGraph): the assembly graph
        component (list):  list of nodes which make up the connected component
        min_edge_trim_weight (int): the minimum weight to not remove a non cutting edge/path
        assembly_max_paths (int): the maximum number of paths allowed before the graph is further simplified
        log (function): the log function

    Returns:
        :class:`Dict` of :class:`int` by :class:`str`: the paths/contigs and their scores
    """
    path_scores = {}  # path_str => score_int
    w = min_edge_trim_weight
    unresolved_components = [component]

    while unresolved_components:
        # since now we know it's a tree, the assemblies will all be ltd to
        # simple paths
        component = unresolved_components.pop(0)
        paths_est = len(assembly.get_sinks(component)) * len(
            assembly.get_sources(component))

        if paths_est > assembly_max_paths:
            edge_weights = sorted([
                e[2]['freq']
                for e in assembly.all_edges(assembly.get_sources(component)
                                            | assembly.get_sinks(component),
                                            data=True)
            ])
            w = max([w + 1, edge_weights[0]])

            if w > edge_weights[-1]:
                continue
            log(
                'reducing estimated paths. Current estimate is {}+ from'.
                format(paths_est), len(component), 'nodes', 'filter increase',
                w)
            assembly.trim_forks_by_freq(w)
            assembly.trim_noncutting_paths_by_freq(w)
            assembly.trim_tails_by_freq(w)

            unresolved_components.extend(
                digraph_connected_components(assembly, component))
        else:
            for source, sink in itertools.product(
                    assembly.get_sources(component),
                    assembly.get_sinks(component)):
                paths = list(nx.all_simple_paths(assembly, source, sink))
                for path in paths:
                    s = path[0] + ''.join([p[-1] for p in path[1:]])
                    score = 0
                    for i in range(0, len(path) - 1):
                        score += assembly.get_edge_freq(path[i], path[i + 1])
                    path_scores[s] = max(path_scores.get(s, 0), score)
    return path_scores
Exemplo n.º 51
0
    def compute_periodicity_all_simple_paths_algorithm(self):
        """

        Returns:

        """
        self_loop_nodes = list(
            nx.nodes_with_selfloops(self._connected_subgraph))
        all_nodes_independent_cell_image_vectors = []
        my_simple_graph = nx.Graph(self._connected_subgraph)
        for test_node in self._connected_subgraph.nodes():
            # TODO: do we need to go through all test nodes ?
            this_node_cell_img_vectors = []
            if test_node in self_loop_nodes:
                for key, edge_data in self._connected_subgraph[test_node][
                        test_node].items():
                    if edge_data["delta"] == (0, 0, 0):
                        raise ValueError(
                            "There should not be self loops with delta image = (0, 0, 0)."
                        )
                    this_node_cell_img_vectors.append(edge_data["delta"])
            for d1, d2 in itertools.combinations(this_node_cell_img_vectors,
                                                 2):
                if d1 == d2 or d1 == tuple(-ii for ii in d2):
                    raise ValueError(
                        "There should not be self loops with the same (or opposite) delta image."
                    )
            this_node_cell_img_vectors = get_linearly_independent_vectors(
                this_node_cell_img_vectors)
            # Here, we adopt a cutoff equal to the size of the graph, contrary to the default of networkX (size - 1),
            # because otherwise, the all_simple_paths algorithm fail when the source node is equal to the target node.
            paths = []
            # TODO: its probably possible to do just a dfs or bfs traversal instead of taking all simple paths!
            test_node_neighbors = my_simple_graph.neighbors(test_node)
            breaknodeloop = False
            for test_node_neighbor in test_node_neighbors:
                # Special case for two nodes
                if len(self._connected_subgraph[test_node]
                       [test_node_neighbor]) > 1:
                    this_path_deltas = []
                    node_node_neighbor_edges_data = list(
                        self._connected_subgraph[test_node]
                        [test_node_neighbor].values())
                    for edge1_data, edge2_data in itertools.combinations(
                            node_node_neighbor_edges_data, 2):
                        delta1 = get_delta(test_node, test_node_neighbor,
                                           edge1_data)
                        delta2 = get_delta(test_node_neighbor, test_node,
                                           edge2_data)
                        this_path_deltas.append(delta1 + delta2)
                    this_node_cell_img_vectors.extend(this_path_deltas)
                    this_node_cell_img_vectors = get_linearly_independent_vectors(
                        this_node_cell_img_vectors)
                    if len(this_node_cell_img_vectors) == 3:
                        break
                for path in nx.all_simple_paths(
                        my_simple_graph,
                        test_node,
                        test_node_neighbor,
                        cutoff=len(self._connected_subgraph),
                ):
                    path_indices = [nodepath.isite for nodepath in path]
                    if path_indices == [
                            test_node.isite, test_node_neighbor.isite
                    ]:
                        continue
                    path_indices.append(test_node.isite)
                    path_indices = tuple(path_indices)
                    if path_indices not in paths:
                        paths.append(path_indices)
                    else:
                        continue
                    path.append(test_node)
                    # TODO: there are some paths that appears twice for cycles, and there are some paths that should
                    # probably not be considered
                    this_path_deltas = [np.zeros(3, np.int)]
                    for (node1,
                         node2) in [(node1, path[inode1 + 1])
                                    for inode1, node1 in enumerate(path[:-1])]:
                        this_path_deltas_new = []
                        for key, edge_data in self._connected_subgraph[node1][
                                node2].items():
                            delta = get_delta(node1, node2, edge_data)
                            for current_delta in this_path_deltas:
                                this_path_deltas_new.append(current_delta +
                                                            delta)
                        this_path_deltas = this_path_deltas_new
                    this_node_cell_img_vectors.extend(this_path_deltas)
                    this_node_cell_img_vectors = get_linearly_independent_vectors(
                        this_node_cell_img_vectors)
                    if len(this_node_cell_img_vectors) == 3:
                        breaknodeloop = True
                        break
                if breaknodeloop:
                    break
            this_node_cell_img_vectors = get_linearly_independent_vectors(
                this_node_cell_img_vectors)
            independent_cell_img_vectors = this_node_cell_img_vectors
            all_nodes_independent_cell_image_vectors.append(
                independent_cell_img_vectors)
            # If we have found that the sub structure network is 3D-connected, we can stop ...
            if len(independent_cell_img_vectors) == 3:
                break
        self._periodicity_vectors = []
        if len(all_nodes_independent_cell_image_vectors) != 0:
            for (independent_cell_img_vectors
                 ) in all_nodes_independent_cell_image_vectors:
                if len(independent_cell_img_vectors) > len(
                        self._periodicity_vectors):
                    self._periodicity_vectors = independent_cell_img_vectors
                if len(self._periodicity_vectors) == 3:
                    break
Exemplo n.º 52
0
# Config
src_addr = argv[1]
dest_addr = argv[2]
cutoff = int(argv[3])

with open('../grapher/tx_graph.dat', "rb") as infile:
    G = pickle.load(infile)

print("Graph loaded.")

with open(str(src_addr) + "_to_" + str(dest_addr) + ".txt", 'w') as f:

    paths = list(
        nx.all_simple_paths(G,
                            source=src_addr,
                            target=dest_addr,
                            cutoff=cutoff))

    print(
        "Added %d new paths from address %s to address %s with min length %d."
        % (len(new_paths), src_addr, dest_addr, min([len(x) for x in paths])))

    # Sort paths by length
    paths.sort(key=len)

    tx_hashes = defaultdict(list)

    for i, path in enumerate(paths):
        for index in range(len(path) - 1):
            temp_hashes = []
            for index, value in G[path[index]][path[index + 1]].items():
Exemplo n.º 53
0
Graph.clear()
Graph.nodes()
Graph.edges()

# In[ ]:

Graph.nodes()

# In[ ]:

Graph.add_nodes_from(['a', 'b', 'c', 'd'])
Graph.add_edges_from([('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'),
                      ('b', 'd'), ('d', 'c')])
print('all paths')
for path in nx.all_simple_paths(Graph, source='a', target='c'):
    print(path)

# In[ ]:

nx.draw_networkx(Graph)
plt.show()

# In[ ]:

Graph.clear()

# In[ ]:

Graph.add_path([3, 5, 4, 1, 0, 2, 7, 8, 9, 6])
Graph.add_path([3, 0, 6, 4, 2, 7, 1, 9, 8, 5])
Exemplo n.º 54
0
    def get_variants(self, probabilities=False, generate_users=False, generate_long_term_dependencies=False):
        """
        Return all possible variants from the process model.
        If probabilities is set to True the implicit probabilities similar to a random walk are returned as well

        :param probabilities: boolean, return the probabilities
        :param generate_users: boolean, generate user attribute
        :param generate_long_term_dependencies: boolean, generate long-term dependencies in each trace
        :return:
        """
        self.variants = EventLog()

        num_users = None

        if generate_users:
            num_users = np.random.randint(10, 30)
            users = np.arange(num_users)
            self.variants.attr['attr_dims'] = {
                'name': len(self.graph.node),
                'user': int(num_users) + 2
            }
            g = self.graph
            for key in g.node.keys():
                random_users = np.sort(
                    np.random.choice(users, np.random.randint(1, 5), replace=False)).tolist()
                random_users = [str(u) for u in random_users]
                if key in [self.start_event, self.end_event]:
                    random_users = None
                g.node[key]['_possible_users'] = random_users

        for path in sorted(nx.all_simple_paths(self.graph, source=self.start_event, target=self.end_event)):
            path = path[1:-1]  # remove BOS and EOS
            trace = Trace(label='normal')
            if generate_users:
                trace.attr["user_voc_size"] = num_users
            for event in path:
                trace.add_event(Event(name=event, start_time=None, **dict(self.graph.node[event].items())))
            self.variants.add_trace(trace)

        if generate_long_term_dependencies:
            # add long term dependencies to every variant
            # this means that each variant will have exactly one long term dependency where the user must
            # be the same for two events
            for variant in self.variants:
                random_events = np.sort(
                    np.random.choice(range(len(variant.events)), 2, replace=False))  # remove BOS and EOS
                random_attr = np.random.choice(list(variant[random_events[1]].attr.keys()), replace=False)
                head = random_events[0]
                tail = random_events[1:]

                for idx in tail:
                    variant[idx].attr[random_attr] = int(head)  # point to earlier event

        if not self.variant_probabilities and probabilities:
            self.variant_probabilities = []
            for variant in self.variants:
                p = np.product(
                    [1.0 / max(1.0, len([edge[1] for edge in self.graph.edges() if edge[0] == event.name])) for
                     event in
                     variant])
                self.variant_probabilities.append(p)

        if probabilities:
            return self.variants, self.variant_probabilities
        else:
            return self.variants
Exemplo n.º 55
0
def test():
    all_odd_evens_file = open(
        'Generated_Files/Turn_Model_Lists/all_odd_evens_doa.txt', 'w')
    turns_health_2d_network = {
        "N2W": False,
        "N2E": False,
        "S2W": False,
        "S2E": False,
        "W2N": False,
        "W2S": False,
        "E2N": False,
        "E2S": False
    }
    Config.ag.topology = '2DMesh'
    Config.ag.x_size = 3
    Config.ag.y_size = 3
    Config.ag.z_size = 1
    Config.RotingType = 'NonMinimalPath'
    ag = copy.deepcopy(AG_Functions.generate_ag())
    number_of_pairs = len(ag.nodes()) * (len(ag.nodes()) - 1)

    max_ratio = 0
    classes_of_doa_ratio = []
    turn_model_class_dict = {}
    for turn_model in all_odd_even_list:
        #for item in selected_turn_models:
        #print item
        #turn_model = all_odd_even_list[item]
        #print turn_model
        turn_model_index = all_odd_even_list.index(turn_model)
        turn_model_odd = turn_model[0]
        turn_model_even = turn_model[1]

        turns_health = copy.deepcopy(turns_health_2d_network)
        shmu = SystemHealthMonitoringUnit.SystemHealthMonitoringUnit()
        shmu.setup_noc_shm(ag, turns_health, False)
        noc_rg = copy.deepcopy(
            Routing.generate_noc_route_graph(ag, shmu, [], False, False))

        for node in ag.nodes():
            node_x, node_y, node_z = AG_Functions.return_node_location(node)
            if node_x % 2 == 1:
                for turn in turn_model_odd:
                    shmu.restore_broken_turn(node, turn, False)
                    from_port = str(node) + str(turn[0]) + "I"
                    to_port = str(node) + str(turn[2]) + "O"
                    Routing.update_noc_route_graph(noc_rg, from_port, to_port,
                                                   'ADD')
            else:
                for turn in turn_model_even:
                    shmu.restore_broken_turn(node, turn, False)
                    from_port = str(node) + str(turn[0]) + "I"
                    to_port = str(node) + str(turn[2]) + "O"
                    Routing.update_noc_route_graph(noc_rg, from_port, to_port,
                                                   'ADD')
        #draw_rg(noc_rg)
        number_of_pairs = len(ag.nodes()) * (len(ag.nodes()) - 1)
        doa_ex = extended_degree_of_adaptiveness(
            ag, noc_rg, False) / float(number_of_pairs)
        doa = degree_of_adaptiveness(ag, noc_rg,
                                     False) / float(number_of_pairs)
        sum_of_paths = 0
        sum_of_sim_ratio = 0

        for source_node in ag.nodes():
            for destination_node in ag.nodes():
                if source_node != destination_node:
                    if is_destination_reachable_from_source(
                            noc_rg, source_node, destination_node):
                        #print source_node, "--->", destination_node
                        if Config.RotingType == 'MinimalPath':
                            shortest_paths = list(
                                all_shortest_paths(
                                    noc_rg,
                                    str(source_node) + str('L') + str('I'),
                                    str(destination_node) + str('L') +
                                    str('O')))
                            paths = []
                            for path in shortest_paths:
                                minimal_hop_count = manhattan_distance(
                                    source_node, destination_node)
                                if (len(path) / 2) - 1 <= minimal_hop_count:
                                    paths.append(path)
                        else:
                            paths = list(
                                all_simple_paths(
                                    noc_rg,
                                    str(source_node) + str('L') + str('I'),
                                    str(destination_node) + str('L') +
                                    str('O')))
                        #for path in paths:
                        #    print path
                        local_sim_ratio = 0
                        counter = 0
                        if len(paths) > 1:
                            for i in range(0, len(paths)):
                                for j in range(i, len(paths)):
                                    if paths[i] != paths[j]:
                                        sm = difflib.SequenceMatcher(
                                            None, paths[i], paths[j])
                                        counter += 1
                                        local_sim_ratio += sm.ratio()
                            #print float(local_sim_ratio)/counter
                            sum_of_sim_ratio += float(
                                local_sim_ratio) / counter
                        else:

                            sum_of_sim_ratio += 1
        if Config.RotingType == 'MinimalPath':
            print("Turn Model ", '%5s' % turn_model_index, "\tdoa:",
                  "{:3.3f}".format(doa), "\tsimilarity ratio:",
                  "{:3.3f}".format(sum_of_sim_ratio),
                  "\t\tfault tolerance metric:",
                  "{:3.5f}".format(float(doa) / sum_of_sim_ratio))
            doa_ratio = float("{:3.5f}".format(
                float(doa) / sum_of_sim_ratio, 5))
        else:
            print("Turn Model ", '%5s' % turn_model_index, "\tdoa:",
                  "{:3.3f}".format(doa_ex), "\tsimilarity ratio:",
                  "{:3.3f}".format(sum_of_sim_ratio),
                  "\t\tfault tolerance metric:",
                  "{:3.5f}".format(float(doa_ex) / sum_of_sim_ratio))
            doa_ratio = float("{:3.5f}".format(
                float(doa_ex) / sum_of_sim_ratio, 5))

        if doa_ratio not in classes_of_doa_ratio:
            classes_of_doa_ratio.append(doa_ratio)
        if doa_ratio in list(turn_model_class_dict.keys()):
            turn_model_class_dict[doa_ratio].append(turn_model_index)
        else:
            turn_model_class_dict[doa_ratio] = [turn_model_index]
        if max_ratio < doa_ratio:
            max_ratio = doa_ratio

        #print "--------------------------------------------"
        del noc_rg
    print("max doa_ratio", max_ratio)
    print("classes of doa_ratio", classes_of_doa_ratio)
    for item in sorted(turn_model_class_dict.keys()):
        print(item, turn_model_class_dict[item])
    return None
Exemplo n.º 56
0
def load_step(file_obj, file_type=None):
    '''
    Use the STEPtools Inc. Author Tools binary to mesh a STEP file,
    and return a list of Trimesh objects.

    Using this over openCASCADE as it is signifigantly more stable (though not OSS.) 
    
    STEPtools Inc. provides the binary under this license:
    http://www.steptools.com/demos/license_author.html

    To install the required binary ('export_product_asm') into PATH:
        wget http://www.steptools.com/demos/stpidx_author_linux_x86_64_16.0.zip
        unzip stpidx_author_linux_x86_64_16.0.zip
        sudo cp stpidx_author_linux_x86_64/bin/export_product_asm /usr/bin/
    
    Arguments
    ----------
    file_obj:  file like object containing step file
    file_type: unused

    Returns
    ----------
    meshes: list of Trimesh objects (with correct metadata set from STEP file)
    '''

    with NamedTemporaryFile() as out_file:
        with NamedTemporaryFile(suffix='.STEP') as in_file:
            if hasattr(file_obj, 'read'):
                in_file.write(file_obj.read())
                in_file.seek(0)
                file_name = in_file.name
            else:
                file_name = file_obj
            check_call([
                _STEP_FACETER, file_name, '-tol',
                str(res.mesh), '-o', out_file.name
            ])
            t = cElementTree.parse(out_file)
    meshes = {}
    # get the meshes without metadata from the XML document
    for shell in t.findall('shell'):
        # query the xml structure for vertices and faces
        vertices = np.array(
            [v.get('p').split() for v in shell.findall('.//v')],
            dtype=np.float)
        faces = np.array([f.get('v').split() for f in shell.findall('.//f')],
                         dtype=np.int)
        # normals aren't always returned but faces have correct winding
        # so they are autogenerated correctly from dot products
        mesh = {'vertices': vertices, 'faces': faces, 'metadata': {}}
        # store the mesh by id reference
        meshes[shell.get('id')] = mesh

    try:
        # populate the graph of shapes and transforms
        g = nx.MultiDiGraph()
        # keys: {mesh id : shape id}
        mesh_shape = {}
        # assume that the document has consistant units
        to_inches = None
        for shape in t.findall('shape'):
            shape_id = shape.get('id')
            shape_unit = shape.get('unit')
            mesh_id = shape.get('shell')
            if not shape_unit is None:
                to_inches = float(shape_unit.split()[1]) * _METERS_TO_INCHES
            if not mesh_id is None:
                for i in mesh_id.split():
                    mesh_shape[i] = shape_id
                #g.node[shape_id]['mesh'] = mesh_id

                g.add_node(shape_id, {'mesh': mesh_id})

            for child in shape.getchildren():
                child_id = child.get('ref')
                transform = np.array(child.get('xform').split(),
                                     dtype=np.float).reshape((4, 4)).T
                g.add_edge(shape_id, child_id, transform=transform)

        # which product ID has the root shape
        prod_root = t.getroot().get('root')
        shape_root = None
        for prod in t.findall('product'):
            prod_id = prod.get('id')
            prod_name = prod.get('name')
            prod_shape = prod.get('shape')
            if prod_id == prod_root:
                shape_root = prod_shape
            g.node[prod_shape]['product_name'] = prod_name

        # now that the assembly tree has been populated, traverse it to
        # find the final transforms and quantities for the meshes we extracted
        for mesh_id in meshes.keys():
            shape_id = mesh_shape[mesh_id]
            transforms_all = deque()
            path_str = deque()
            if shape_id == shape_root:
                paths = [[shape_id, shape_id]]
            else:
                paths = nx.all_simple_paths(g, shape_root, shape_id)
            paths = np.array(list(paths))
            garbage, unique = np.unique(['.'.join(i) for i in paths],
                                        return_index=True)
            paths = paths[unique]
            for path in paths:
                path_name = [g.node[i]['product_name'] for i in path[:-1]]
                edges = np.column_stack(
                    (path[:-1], path[:-1])).reshape(-1)[1:-1].reshape((-1, 2))
                transforms = [np.eye(4)]
                for e in edges:
                    # get every transform from the edge
                    local = [
                        i['transform'] for i in g.edge[e[0]][e[1]].values()
                    ]
                    # all the transforms are sequential, so we want combinations
                    transforms = [
                        np.dot(*i)
                        for i in itertools.product(transforms, local)
                    ]

                transforms_all.extend(transforms)
                path_str.extend(['/'.join(path_name)] * len(transforms))
            meshes[mesh_id]['vertices'] *= to_inches
            meshes[mesh_id]['metadata']['units'] = 'inches'
            meshes[mesh_id]['metadata']['name'] = path_name[-1]
            meshes[mesh_id]['metadata']['paths'] = np.array(path_str)
            meshes[mesh_id]['metadata']['quantity'] = len(transforms_all)
            meshes[mesh_id]['metadata']['transforms'] = np.array(
                transforms_all)
    except:
        log.error('STEP load processing error, aborting metadata!',
                  exc_info=True)

    return meshes.values()
Exemplo n.º 57
0
    def outputKshortestPath(self):
        self.numSubpath = 0
        f = open("./Graph/linkonpath.txt", "w")
        fn = open("./Graph/nodeonpath.txt", "w")
        f.writelines("%d %d %d\n" % (self.NODENUM, self.NUMLINK, self.pathNum))
        for src in self.NODE_DICT:
            for sink in self.NODE_DICT:
                if src != sink:
                    pathcount = 0
                    m_pathcount = [0 for i in range(self.cutoff + 1)]
                    for path in nx.all_shortest_paths(self.topo,
                                                      source=src,
                                                      target=sink):
                        f.writelines("%d %d " % (src, sink))
                        pathcount += 1
                        m_pathcount[len(path) - 1] += 1
                        self.numSubpath += 1
                        pre = 0
                        fn.writelines("%d " % path[pre])
                        while pre < len(path) - 1:
                            cur = pre + 1
                            if path[pre] in self.LINK_DICT and path[
                                    cur] in self.LINK_DICT[path[pre]]:
                                f.writelines(
                                    "%d " %
                                    self.LINK_DICT[path[pre]][path[cur]].id)
                                fn.writelines("%d " % path[cur])
                            else:
                                f.writelines(
                                    "%d " %
                                    self.LINK_DICT[path[cur]][path[pre]].id)
                            pre = pre + 1
                        f.writelines("\n")
                        fn.writelines("\n")
                        if pathcount >= self.pathNum:
                            break

                    if pathcount < self.pathNum:
                        for path in nx.all_simple_paths(self.topo,
                                                        source=src,
                                                        target=sink,
                                                        cutoff=self.cutoff):
                            f.writelines("%d %d " % (src, sink))
                            pathcount += 1
                            m_pathcount[len(path) - 1] += 1
                            self.numSubpath += 1
                            pre = 0
                            fn.writelines("%d " % path[pre])
                            while pre < len(path) - 1:
                                cur = pre + 1
                                if path[pre] in self.LINK_DICT and path[
                                        cur] in self.LINK_DICT[path[pre]]:
                                    f.writelines(
                                        "%d " %
                                        self.LINK_DICT[path[pre]][path[cur]].id
                                    )
                                    fn.writelines("%d " % path[cur])
                                else:
                                    f.writelines(
                                        "%d " %
                                        self.LINK_DICT[path[cur]][path[pre]].id
                                    )
                                pre = pre + 1
                            f.writelines("\n")
                            fn.writelines("\n")
                            if pathcount >= self.pathNum:
                                break
        f.close()
        fn.close()
Exemplo n.º 58
0
"""
Created on Sat Dec 18 14:43:04 2021

@author: wapisani
"""

import os
import numpy as np
import networkx as nx

directory = r'F:\Documents\Programming\AoC\2021'
# directory = r'/Users/wapisani/Documents/Programming/AoC/2021'
os.chdir(directory)

# with open('input_day12.txt','r') as handle:
#     data = [line.strip() for line in handle.readlines()]

with open('sample_day12.txt', 'r') as handle:
    data = [line.strip() for line in handle.readlines()]

edges = []
for line in data:
    edge = line.split('-')
    edges.append((edge[0], edge[1]))

G = nx.Graph()
for edge in edges:
    G.add_edge(*edge)

paths = nx.all_simple_paths(G, 'start', 'end')
Exemplo n.º 59
0
def dci_orient(X1,
               X2,
               skeleton: set,
               nodes_cond_set: set,
               rh1: RegressionHelper = None,
               rh2: RegressionHelper = None,
               alpha: float = 0.1,
               max_set_size: int = 3,
               verbose: int = 0):
    """
    Orients edges in the skeleton of the difference DAG.

    Parameters
    ----------
    X1: array, shape = [n_samples, n_features]
        First dataset.    
    X2: array, shape = [n_samples, n_features]
        Second dataset.
    skeleton: set
        Set of edges in the skeleton of the difference-DAG.
    nodes_cond_set: set
        Nodes to be considered as conditioning sets.
    rh1: RegressionHelper, default = None
        Sufficient statistics estimated based on samples in the first dataset, stored in RegressionHelper class.
    rh2: RegressionHelper, default = None
        Sufficient statistics estimated based on samples in the second dataset, stored in RegressionHelper class.
    alpha: float, default = 0.1
        Significance level parameter for determining orientation of an edge.
        Lower alpha results in more directed edges in the difference-DAG.
    max_set_size: int, default = 3
        Maximum conditioning set size used to test regression invariance.
        Smaller maximum conditioning set size results in faster computation time. For large datasets recommended max_set_size is 3.
    verbose: int, default = 0
        The verbosity level of logging messages.

    See Also
    --------
    dci, dci_undirected_graph, dci_skeleton

    Returns
    -------
    oriented_edges: set
        Set of edges in the skeleton of the difference-DAG for which directionality could be determined.
    unoriented_edges: set
        Set of edges in the skeleton of the difference-DAG for which directionality could not be determined.
    """

    if verbose > 0:
        print("DCI edge orientation...")

    assert 0 <= alpha <= 1, "alpha must be in [0,1] range."

    if rh1 is None or rh2 is None:
        # obtain sufficient statistics
        suffstat1 = gauss_ci_suffstat(X1)
        suffstat2 = gauss_ci_suffstat(X2)
        rh1 = RegressionHelper(suffstat1)
        rh2 = RegressionHelper(suffstat2)

    nodes = {i for i, j in skeleton} | {j for i, j in skeleton}
    oriented_edges = set()

    n1 = rh1.suffstat['n']
    n2 = rh2.suffstat['n']
    for i, j in skeleton:
        for cond_i, cond_j in zip(
                powerset(nodes_cond_set - {i}, r_max=max_set_size),
                powerset(nodes_cond_set - {j}, r_max=max_set_size)):
            # compute residual variances for i
            beta1_i, var1_i, _ = rh1.regression(i, list(cond_i))
            beta2_i, var2_i, _ = rh2.regression(i, list(cond_i))
            # compute p-value for invariance of residual variances for i
            pvalue_i = ncfdtr(n1 - len(cond_i), n2 - len(cond_i), 0,
                              var1_i / var2_i)
            pvalue_i = 2 * min(pvalue_i, 1 - pvalue_i)

            # compute residual variances for j
            beta1_j, var1_j, _ = rh1.regression(j, list(cond_j))
            beta2_j, var2_j, _ = rh2.regression(j, list(cond_j))
            # compute p-value for invariance of residual variances for j
            pvalue_j = ncfdtr(n1 - len(cond_j), n2 - len(cond_j), 0,
                              var1_j / var2_j)
            pvalue_j = 2 * min(pvalue_j, 1 - pvalue_j)

            if ((pvalue_i > alpha) | (pvalue_j > alpha)):
                # orient the edge according to highest p-value
                if pvalue_i > pvalue_j:
                    edge = (j, i) if j in cond_i else (i, j)
                    pvalue_used = pvalue_i
                else:
                    edge = (i, j) if i in cond_j else (j, i)
                    pvalue_used = pvalue_j
                oriented_edges.add(edge)

                if verbose > 0:
                    print(
                        "Oriented (%d, %d) as %s since p-value=%.5f > alpha=%.5f"
                        % (i, j, edge, pvalue_used, alpha))
                break

    # orient edges via graph traversal
    unoriented_edges_before_traversal = skeleton - oriented_edges - {
        (j, i)
        for i, j in oriented_edges
    }
    unoriented_edges = unoriented_edges_before_traversal.copy()
    g = nx.DiGraph()
    for i, j in oriented_edges:
        g.add_edge(i, j)
    g.add_nodes_from(nodes)

    for i, j in unoriented_edges_before_traversal:
        chain_path = list(nx.all_simple_paths(g, source=i, target=j))
        if len(chain_path) > 0:
            oriented_edges.add((i, j))
            unoriented_edges.remove((i, j))
            if verbose > 0:
                print("Oriented (%d, %d) as %s with graph traversal" %
                      (i, j, (i, j)))
        else:
            chain_path = list(nx.all_simple_paths(g, source=j, target=i))
            if len(chain_path) > 0:
                oriented_edges.add((j, i))
                unoriented_edges.remove((i, j))
                if verbose > 0:
                    print("Oriented (%d, %d) as %s with graph traversal" %
                          (i, j, (j, i)))

    # form an adjacency matrix containing directed and undirected edges
    num_nodes = X1.shape[1]
    adjacency_matrix = edges2adjacency(
        num_nodes, unoriented_edges, undirected=True) + edges2adjacency(
            num_nodes, oriented_edges, undirected=False)
    return adjacency_matrix
Exemplo n.º 60
0
def main():
    print("============================================================")
    print("SPICE PARSER AND AUTOMATIC STACK CALCULATOR")
    print("============================================================")
    print("By: Rodrigo N. Wuerdig")
    print("Contact: [email protected]")
    print_gmelogo()

    #===========================================================================
    #Fetch Args
    #===========================================================================
    if (sys.argv[1] == None):
        print("WARNING: ARG1 SHOULD CONTAIN WP/WN RATIO")
        wpwn_ratio = 2.0
    else:
        wpwn_ratio = float(sys.argv[1])
    if (sys.argv[2] == None):
        print("ERROR: ARG2 SHOULD CONTAIN SPICE FILE")
        return -1
    else:
        file = sys.argv[2]
    #===========================================================================
    #Open Spice File
    #===========================================================================
    f = open(file, "r")
    ntransistors = []
    #Start List for N Transistors
    ptransistors = []
    #Start List for P Transistors
    inputs = []
    #Start List for Inputs
    outputs = []
    #Start List for Output Nodes
    for line in f:
        newline = line.rstrip('\n')
        #Check if the line starts with *.pininfo
        if "*.pininfo" in newline.lower():
            #Fetches Outputs from the pininfo line
            outpins = re.findall('[a-zA-Z0-9]*:[Oo]', newline)
            #Fetches Inputs from the pininfo line
            inpins = re.findall('[a-zA-Z0-9]*:[Ii]', newline)
            #Fetches Vdd pin from the pininfo line
            vddpin = str(re.search('[a-zA-Z0-9]*:[Pp]', newline)[0])
            #Fetches Gnd pin from the pininfo line
            gndpin = str(re.search('[a-zA-Z0-9]*:[Gg]', newline)[0])
            #Check if its missing output pins
            if is_empty(outpins):
                print("pattern not found outputs")
            else:
                for out in outpins:
                    print("Output Pins:", out)
                    outputs.append(out.replace(':O', ''))
            #Check if its missing output pins
            if is_empty(inpins):
                print("pattern not found outputs")
            else:
                for in_pin in inpins:
                    print("input Pins:", in_pin)
                    inputs.append(in_pin.replace(':O', ''))
            #Check if its missing vdd pins
            if is_empty(vddpin):
                print("pattern not found outputs")
                return -3
            else:
                print("Circuit Supply Pin:", vddpin)
                vddpin = vddpin.replace(':P', '')
            #Check if its missing gnd pins
            if is_empty(gndpin):
                print("pattern not found outputs")
                return -3
            else:
                print("Circuit Ground Pin:", gndpin)
                gndpin = gndpin.replace(':G', '')

        #===========================================================================
        #Transistor Lines
        elif ("pch" in newline.lower()) or ("nch" in newline.lower()):
            print("\n=========================")
            name = newline.split()[0]
            print("Name:", name)
            source = newline.split()[1]
            print("Source:", source)
            gate = newline.split()[2]
            print("Gate:", gate)
            drain = newline.split()[3]
            print("Drain:", drain)
            bulk = newline.split()[4]
            print("Bulk:", bulk)
            ttype = newline.split()[5]
            print("Type:", ttype)
            wsize = re.findall('[Ww]=[0-9Ee]*.[0-9Ee]*[\-+0-9]*', newline)
            if is_empty(wsize):
                print("pattern not found W size")
            else:
                wsize = wsize[0].replace('w=', '')
                wsize = wsize.replace('W=', '')
                wsize = float(wsize)
                print("W Size:", wsize)

            lsize = re.findall('[Ll]=[0-9Ee]*.[0-9Ee]*[\-+0-9]*', newline)
            if is_empty(lsize):
                print("pattern not found L Size")
            else:
                lsize = lsize[0].replace('l=', '')
                lsize = lsize.replace('L=', '')
                lsize = float(lsize)
                print("L Size:", lsize)

            fingers = re.findall('nf=[0-9]*', newline.lower())
            if is_empty(fingers):
                print("pattern not found: Number of Fingers")
                fingers = 1
            else:
                fingers = fingers[0].replace('nf=', '')
                fingers = fingers.replace('NF=', '')
                fingers = int(fingers)
                print("Fingers:", fingers)

            if (ttype.lower() == "pch"):
                mos = Transistor(name, source, gate, drain, bulk, ttype, wsize,
                                 fingers, lsize)
                ptransistors.append(mos)
            elif (ttype.lower() == "nch"):
                mos = Transistor(name, source, gate, drain, bulk, ttype, wsize,
                                 fingers, lsize)
                ntransistors.append(mos)
    f.close()
    #===========================================================================
    #Prints Number of Fetched Transistors
    #===========================================================================
    print("\n\n============================================================")
    print("The Circuit Contains:")
    print("PMOS TRANSISTORS", len(ptransistors))
    print("NMOS TRANSISTORS", len(ntransistors))
    print("\n\n============================================================")
    #===========================================================================
    #Creates Networkx Node Graph and Include Nodes
    #===========================================================================
    G = nx.Graph()
    #Creates an graph called G
    color_map = []
    #list that will define node colors
    node_size = []
    #list that will define node sizes
    #-----------------------------------------
    #Searches Nodes and Color them
    #-----------------------------------------
    G.add_node(vddpin)
    #create vdd node
    color_map.append('green')
    node_size.append(2000)
    G.add_node(gndpin)
    #create gnd node
    color_map.append('green')
    node_size.append(2000)

    for outpin in outputs:
        G.add_node(outpin)
        color_map.append('magenta')
        node_size.append(1000)
    for n in ptransistors:
        G.add_node(n.get_name())
        color_map.append('red')
        node_size.append(500)
    for n in ntransistors:
        G.add_node(n.get_name())
        color_map.append('blue')
        node_size.append(500)
    for n in ptransistors:
        G.add_edge(n.get_name(), n.get_source())
        color_map.append('yellow')
        node_size.append(100)
        G.add_edge(n.get_name(), n.get_drain())
        color_map.append('yellow')
        node_size.append(100)
    for n in ntransistors:
        G.add_edge(n.get_name(), n.get_source())
        color_map.append('yellow')
        node_size.append(100)
        G.add_edge(n.get_name(), n.get_drain())
        color_map.append('yellow')
        node_size.append(100)

    #===========================================================================
    #Fetches Common Nodes
    #===========================================================================
    common_nodes = []
    for n in ntransistors:
        for p in ptransistors:
            if (n.get_drain() == p.get_drain()):
                common_nodes.append(n.get_drain())
            elif (n.get_drain() == p.get_source()):
                common_nodes.append(n.get_drain())
            elif (n.get_source() == p.get_drain()):
                common_nodes.append(n.get_source())
            elif (n.get_source() == p.get_source()):
                common_nodes.append(n.get_source())

    common_nodes = list(dict.fromkeys(common_nodes))

    #===========================================================================
    #Searches Euler Paths from COMMON_NODE to VDD
    #===========================================================================
    for common_node in common_nodes:
        print("PATH FROM", common_node, "TO", vddpin)
        print("============================================================")
        for path in nx.all_simple_paths(G, source=common_node, target=vddpin):
            nodes_path_p = []
            stack = 0
            if not (gndpin) in path:
                print("Full Path:", path)
                for node in ptransistors:
                    if node.get_name() in path:
                        stack = stack + 1
                        nodes_path_p.append(node)
                for node in nodes_path_p:
                    if node.get_stack() < stack:
                        node.set_stack(stack)
                print("Stack Size =", stack)
            print(
                "============================================================")

    #===========================================================================
    #Searches Euler Paths from COMMON_NODE to VSS
    #===========================================================================
    for common_node in common_nodes:
        print("PATH FROM", common_node, "TO", gndpin)
        print("============================================================")
        for path in nx.all_simple_paths(G, source=common_node, target=gndpin):
            nodes_path_n = []
            stack = 0
            if not (vddpin) in path:
                print("Full Path:", path)
                for node in ntransistors:
                    if node.get_name() in path:
                        stack = stack + 1
                        nodes_path_n.append(node)
                for node in nodes_path_n:
                    if node.get_stack() < stack:
                        node.set_stack(stack)
                print("Stack Size =", stack)
            print(
                "============================================================")

    #===========================================================================
    #Drawn Plot
    #===========================================================================
    print("============================================================")
    nx.draw(G, node_size=node_size, node_color=color_map, with_labels=True)
    #===========================================================================
    #Print Calculed Stack Size for Each Transistor
    #===========================================================================
    for node in ptransistors:
        sizew = node.get_wsize() * node.get_stack() * float(wpwn_ratio)
        print("Node:", node.get_name(), "StackFactor:", node.get_stack(),
              "Calculated Size:", sizew, " Original Size:", node.get_wsize())
    for node in ntransistors:
        sizew = node.get_wsize() * node.get_stack()
        print("Node:", node.get_name(), "StackFactor:", node.get_stack(),
              "Calculated Size:", sizew, " Original Size:", node.get_wsize())
    plt.show()

    #===========================================================================
    #Write File
    #===========================================================================
    file = sys.argv[2]
    in_file = open(file, "r")
    file2 = "out_" + file
    out_file = open(file2, "w")
    for line in in_file:
        found = 0
        for node in ptransistors:
            if node.get_name() in line:
                sizew = node.get_wsize() * node.get_stack() * float(wpwn_ratio)
                out_file.write(node.get_name() + " " + node.get_source() +
                               " " + node.get_gate() + " " + node.get_drain() +
                               " " + node.get_bulk() + " " + node.get_ttype() +
                               " W=" + str(sizew) + " NF=" +
                               str(node.get_fingers()) + " L=" +
                               str(node.get_lsize()) + "\n")
                found = 1
        for node in ntransistors:
            if node.get_name() in line:
                sizew = node.get_wsize() * node.get_stack()
                out_file.write(node.get_name() + " " + node.get_source() +
                               " " + node.get_gate() + " " + node.get_drain() +
                               " " + node.get_bulk() + " " + node.get_ttype() +
                               " W=" + str(sizew) + " NF=" +
                               str(node.get_fingers()) + " L=" +
                               str(node.get_lsize()) + "\n")
                found = 1
        if found != 1:
            out_file.write(line)
    in_file.close()
    out_file.close()
    return 0