Exemplo n.º 1
0
    def node_is_isolated(self, node, allow_self_loop=False):
        """Checks if the project item with the given name has any connections.

        Args:
            node (str): Project item name
            allow_self_loop (bool): If default (False), Self-loops are considered as an
                in-neighbor or an out-neighbor so the method returns False. If True,
                single node with a self-loop is considered isolated.

        Returns:
            bool: True if project item has no in-neighbors nor out-neighbors, False if it does.
                Single node with a self-loop is NOT isolated (returns False).
        """
        g = self.dag_with_node(node)
        if not allow_self_loop:
            return nx.is_isolate(g, node)
        has_self_loop = g.has_edge(node, node)
        if not has_self_loop:
            return nx.is_isolate(g, node)
        # The node has a self-loop.
        # Node degree is the number of edges that are connected to it. A self-loop increases the degree by 2
        deg = g.degree(node)
        if deg - 2 == 0:  # If degree - 2 is zero, it is isolated.
            return True
        return False
Exemplo n.º 2
0
def test_is_isolate():
    G = nx.Graph()
    G.add_edge(0, 1)
    G.add_node(2)
    assert not nx.is_isolate(G, 0)
    assert not nx.is_isolate(G, 1)
    assert nx.is_isolate(G, 2)
Exemplo n.º 3
0
def test_is_isolate():
    G = nx.Graph()
    G.add_edge(0, 1)
    G.add_node(2)
    assert_false(nx.is_isolate(G, 0))
    assert_false(nx.is_isolate(G, 1))
    assert_true(nx.is_isolate(G, 2))
Exemplo n.º 4
0
    def build_graph(self):
        # make a partite network
        self.graph = nx.random_partition_graph(self.nodes, 0, 0)

        if self.p == 0:
            return
        lp = math.log(self.p)

        for p1, p2 in pairwise(self.graph.graph['partition']):
            p1 = sorted(p1)
            p2 = sorted(p2)
            for i in p1:
                for j in p2:
                    if int(self.p) == 1:
                        self.graph.add_edge(i, j)
                        continue
                    lr = math.log(1.0 - random.random())
                    if lr/lp >= 1:
                        self.graph.add_edge(i, j)

        # prune unnconnected nodes
        if self.prune:
            for node in self.graph.nodes():
                if nx.is_isolate(self.graph, node):
                    self.graph.remove_node(node)
        self.node_labels_to_ints()
        self.colour()
Exemplo n.º 5
0
def getImportanceGrad(G, x_good, x, nsamples, influ_obj, herd, a):

    #Returns the gradient vector of the multilinear relaxation at x as given in Chekuri's paper
    #(See Theorem 1 in nips2012 paper)

    N = G.number_of_nodes()
    grad = Variable(torch.zeros(N))

    x_prp = (1 - a)*x + a*x_good

    if herd == 1: 
        samples_list = herd_points(x_prp, nsamples) 
    else:
        samples_list = Variable(torch.bernoulli(x_prp.repeat(nsamples, 1)))

    w = getImportanceWeights(samples_list, x, x_prp)

    for t in range(nsamples):
        sample = samples_list[t] 
        m = torch.zeros(sample.size()) 
        for p in np.arange(N):
            if nx.is_isolate(G, p) is False:
                m[p] = 1
                grad[p] = grad[p] + w[t]*(influ_obj(np.logical_or(sample.numpy(), m.numpy())) - influ_obj(np.logical_and(sample.numpy(), np.logical_not(m.numpy()))))
                m[p] = 0

    return grad*1.0/nsamples
Exemplo n.º 6
0
def find_valid_alternatives(go, alt_id_g, rel_g):
    r = [alt_id for alt_id in find_alternatives(go, alt_id_g)
                if alt_id in rel_g and not nx.is_isolate(rel_g, alt_id)]

    if len(r) > 1:
        print(f'found {len(r)} valid alternatives of {go}', file=sys.stderr)

    return r
Exemplo n.º 7
0
 def set_warranted(self):
     undefeated = set([node for (node,x) in self.graph.edges()]) - \
                   set([node for (x,node) in self.graph.edges()])
     undefeated |= set([node for node in self.graph.nodes() 
                        if nx.is_isolate(self.graph, node)])
     warranted = undefeated | self.judge.grounded(undefeated, self.graph, set([]), set([]))
     for w in warranted:
         self.graph.add_node(w, style="filled", fillcolor="green")
     self.warranted = warranted
     print len(warranted), "reviews were accepted"
Exemplo n.º 8
0
 def compress(self):
     first_stage = set([node for (node, x) in self.dotgraph.edges()]) - set(
         [node for (x, node) in self.dotgraph.edges()]
     )
     first_stage |= set([node for node in self.dotgraph.nodes() if nx.is_isolate(self.dotgraph, node)])
     defeat_stages = [first_stage] + self.stages(first_stage, first_stage)
     cs = []
     for stage in defeat_stages:
         cs += self.consistent_subsets(stage, self.warranted)
     compressed_dotnodes = {}
     has_compressed = {}
     compressed_warranted = set([])
     compressed_dotgraph = nx.DiGraph()
     for subset in cs:
         positive_feats = set([])
         negative_feats = set([])
         for i in subset:
             positive_feats |= set(self.dotnodes[i].get_positive_feats())
             negative_feats |= set(self.dotnodes[i].get_negative_feats())
             r = Review(
                 "c" + str(self.cid),
                 {"feats": list(positive_feats), "text": ""},
                 {"feats": list(negative_feats), "text": ""},
             )
         compressed_dotnodes[r.id] = r
         has_compressed[r.id] = subset
         self.cid += 1
         if subset.issubset(self.warranted):
             compressed_warranted.add(r.id)
             compressed_dotgraph.add_node(
                 r.id, style="filled", fillcolor="green", shape="record", label=str(r.subset_label(subset))
             )
         else:
             compressed_dotgraph.add_node(r.id, shape="record", label=str(r.subset_label(subset)))
     for id1, n1 in has_compressed.items():
         for id2, n2 in has_compressed.items():
             for i in n1:
                 for j in n2:
                     ri = self.dotnodes[i]
                     rj = self.dotnodes[j]
                     if (
                         ri.in_conflict(rj)
                         and not (id1, id2) in compressed_dotgraph.edges()
                         and not (id2, id1) in compressed_dotgraph.edges()
                     ):
                         compressed_dotgraph.add_edge(id1, id2, dir="none")
     self.warranted = compressed_warranted
     self.dotgraph = compressed_dotgraph
     self.dotnodes = compressed_dotnodes
     self.has_compressed = has_compressed
    def generate_migration_links_rates(self):

        paths = {}

        migs = []

        max_migs = []

        mindist = 1  # 1km minimum distance in gravity model for improved short-distance asymptotic behavior
        dist_cutoff = 20  # beyond 20km effective distance not reached in 1 day.
        max_migration_dests = 100  # limit of DTK local migration

        for src, v in self.path_lengths:
            paths[src] = {}

            for dest, dist in v.items():
                # print (dist)
                # print (src)
                # print (dest)
                if not dist or src == dest:
                    continue
                if dist < dist_cutoff:
                    mig_rate = self.coeff * self.graph.population[int(dest)]
                    mig_volume = self.graph.population[int(src)] * mig_rate
                    paths[src][dest] = mig_rate
                    migs.append(mig_rate)
                else:
                    warnings.warn(
                        'Check if dist_cutoff is too low for source node ' +
                        str(src) + " distance is " + str(dist))

            d = paths[src]

            if not d:
                warnings.warn('No paths from source ' + str(src) +
                              ' found! Check if node is isolated.')
                print("Node " + str(src) + " is isolate " +
                      str(nx.is_isolate(self.graph, src)))
                continue

            nl = heapq.nlargest(max_migration_dests, d, key=lambda k: d[k])
            # print(len(d), nl, [int(d[k]) for k in nl])
            max_migs.append(d[nl[0]])

            paths[src] = dict([(k, d[k]) for k in nl])

        self.link_rates = paths

        return paths
Exemplo n.º 10
0
def __walks_multi__(nodes,
                    net=None,
                    network_id=None,
                    steps=10,
                    number_of_walks=10,
                    degree=True,
                    start=None,
                    probabilistic=True,
                    weight="weight"):

    performed_walks = {}
    cn = 0
    for node in nodes:

        if cn % 100 == 0:
            print("walks for node ", cn, "outof", len(nodes))
        cn = cn + 1

        walks = []

        if node in net.nodes():

            if not nx.is_isolate(net, node):
                if degree:
                    nw = int(number_of_walks * net.degree[node])
                    print("running walks", nw, "for node", node)
                else:
                    nw = number_of_walks

                walks = global_distances.perform_random_walks(
                    net,
                    steps=steps,
                    number_of_walks=nw,
                    start=node,
                    probabilistic=probabilistic,
                    weight=weight)
                #print("count nodes / edges in walk")
                #nodes_cnt, edges_cnt = global_distances.rank_walks(net, walks)
                performed_walks[node] = walks

    return performed_walks
Exemplo n.º 11
0
 def nodes_filter(x):
     i, v = x
     return i in nodes and (i is not SINK or not is_isolate(graph, SINK))
Exemplo n.º 12
0
def has_isolated_node(g):
    for node in g.nodes():
        if nx.is_isolate(g, node):
            return True

    return False
Exemplo n.º 13
0
nx.is_directed_acyclic_graph(G)
nx.is_aperiodic(G)

# distance measure  (all for connected graph)
nx.center(Gcc)
nx.diameter(Gcc)
nx.eccentricity(Gcc)
nx.periphery(Gcc)
nx.radius(Gcc)

# flows (seg fault currently)
#nx.max_flow(Gcc, 1, 2)
#nx.min_cut(G, 1, 2)

# isolates
nx.is_isolate(G, 1)  # False
nx.is_isolate(G, 5)  # True

# HITS
nx.hits(G, max_iter=1000)  # cannot converge?

# maximal independent set
nx.maximal_independent_set(G)

# shortest path
nx.shortest_path(G)  # need "predecessors_iter"
nx.all_pairs_shortest_path(G)
nx.all_pairs_shortest_path_length(G)

nx.predecessor(G, 1)
nx.predecessor(G, 1, 378)
Exemplo n.º 14
0
Arquivo: DBCP.py Projeto: hfsun/DBCP
def Remove_Single_Node(graph):
    for node in graph.nodes():
        if nx.is_isolate(graph,node):
            graph.remove_node(node)
    return graph
def filter_node(n):
    """Filter out unconnected nodes."""
    return not nx.is_isolate(view, n)
Exemplo n.º 16
0
def plot(dsp,
         workflow=False,
         dot=None,
         edge_data=None,
         view=False,
         depth=-1,
         function_module=True,
         node_output=True,
         nested=False,
         **kw_dot):
    """
    Plots the Dispatcher with a graph in the DOT language with Graphviz.

    :param dsp:
        A dispatcher that identifies the model adopted.
    :type dsp: dispatcher.Dispatcher

    :param dot:
        A directed graph in the DOT language.
    :type dot: graphviz.dot.Digraph, optional

    :param workflow:
       If True the workflow graph will be plotted, otherwise the dmap.
    :type workflow: bool, (DiGraph, dict), optional

    :param edge_data:
        Edge attribute to view. The default is the edge weights.
    :type edge_data: str, optional

    :param node_output:
        If True the node outputs are displayed with the workflow.
    :type node_output: bool

    :param view:
        Open the rendered directed graph in the DOT language with the sys
        default opener.
    :type view: bool, optional

    :param depth:
        Depth of sub-dispatch plots. If negative all levels are plotted.
    :type depth: int, optional

    :param function_module:
        If True the function labels are plotted with the function module,
        otherwise only the function name will be visible.
    :type function_module: bool, optional

    :param nested:
        If False the sub-dispatcher nodes are plotted on the same graph,
        otherwise they can be viewed clicking on the node that has an URL
        link.
    :type nested: bool

    :param kw_dot:
        Dot arguments:

            - name: Graph name used in the source code.
            - comment: Comment added to the first line of the source.
            - directory: (Sub)directory for source saving and rendering.
            - filename: Filename for saving the source (defaults to name + '.gv'
              ).
            - format: Rendering output format ('pdf', 'png', ...).
            - engine: Layout command used ('dot', 'neato', ...).
            - encoding: Encoding for saving the source.
            - graph_attr: Dict of (attribute, value) pairs for the graph.
            - node_attr: Dict of (attribute, value) pairs set for all nodes.
            - edge_attr: Dict of (attribute, value) pairs set for all edges.
            - body: Dict of (attribute, value) pairs to add to the graph
              body.
    :param kw_dot: dict

    :return:
        A directed graph source code in the DOT language.
    :rtype: graphviz.dot.Digraph

    Example:

    .. dispatcher:: dsp
       :opt: graph_attr={'ratio': '1'}
       :code:

        >>> from co2mpas.dispatcher import Dispatcher
        >>> from co2mpas.dispatcher.utils import SubDispatch, SINK
        >>> ss = Dispatcher(name='Sub-sub-dispatcher')
        >>> def fun(a):
        ...     return a + 1, a - 1
        >>> ss.add_function('fun', fun, ['a'], ['b', 'c'])
        'fun'
        >>> sub_dispatch = SubDispatch(ss, ['a', 'b', 'c'], output_type='list')
        >>> s_dsp = Dispatcher(name='Sub-dispatcher')
        >>> s_dsp.add_function('sub_dispatch', sub_dispatch, ['a'], ['b', 'c'])
        'sub_dispatch'
        >>> dispatch = SubDispatch(s_dsp, ['b', 'c', 'a'], output_type='list')
        >>> dsp = Dispatcher(name='Dispatcher')
        >>> dsp.add_data('input', default_value={'a': {'a': 3}})
        'input'
        >>> dsp.add_function('dispatch', dispatch, ['input'], ['d', 'e', SINK])
        'dispatch'

        >>> dot = plot(dsp, graph_attr={'ratio': '1'})

    Dispatch in order to have a workflow:

    .. dispatcher:: dsp
       :opt: workflow=True, graph_attr={'ratio': '1'}
       :code:

        >>> o = dsp.dispatch()
        ...
        >>> wf = plot(dsp, workflow=True, graph_attr={'ratio': '1'})
    """

    args = _init_graph_data(dsp, workflow, edge_data)
    dsp, g, val, dist, edge_data, inputs, outputs = args

    dot = dot or _init_dot(dsp, workflow, nested, **kw_dot)

    dsp2dot_id = _get_dsp2dot_id(dot, dsp.dmap)

    if not g.node:
        _set_node(dot, EMPTY, dsp2dot_id)

    if START in g.node and (len(g.node) == 1 or not nx.is_isolate(g, START)):
        _set_node(dot, START, dsp2dot_id)
    elif inputs and set(inputs).issubset(g.node):
        dot_u = _set_node(dot, START, dsp2dot_id)

        for i, v in enumerate(inputs):
            _set_edge(dot, dot_u, dsp2dot_id[v], xlabel=str(i))

    for k, v in g.node.items():
        if k not in dsp.nodes or (k is SINK and nx.is_isolate(g, SINK)):
            continue

        _set_node(dot,
                  k,
                  dsp2dot_id,
                  node_attr=dsp.nodes.get(k, {}),
                  values=val,
                  dist=dist,
                  dsp=dsp,
                  function_module=function_module,
                  edge_attr=edge_data,
                  workflow_node=v,
                  depth=depth,
                  node_output=node_output,
                  nested=nested)

    for u, v, a in g.edges_iter(data=True):
        _set_edge(dot, dsp2dot_id[u], dsp2dot_id[v], a, edge_data=None)

    if outputs and set(outputs).issubset(g.node):
        dot_v = _set_node(dot, END, dsp2dot_id)

        for i, u in enumerate(outputs):
            _set_edge(dot, dsp2dot_id[u], dot_v, xlabel=str(i))
    if view:
        try:
            dot.render(cleanup=True, view=True)
        except RuntimeError as ex:
            log.warning('{}'.format(ex), exc_info=1)
    return dot
Exemplo n.º 17
0
def stress(G,
           output_folder,
           fI,
           x_constraint=None,
           y_constraint=None,
           weight_threshold=0):
    # remove weak edges
    G2 = G.copy()
    for ij in G.edges:
        if G.edges[ij]['weight'] < weight_threshold:
            G2.remove_edge(*ij)

    # Make another copy
    G3 = G2.copy()
    # Check if any nodes have been isolated
    if nx.number_of_isolates(G2) != 0:
        # First remove nodes from x and y constraints
        for i in range(0, len(G2)):
            # Check if node is isolated
            if nx.is_isolate(G2, i):
                # Then check if node has x and y constraints
                if i in x_constraint:
                    del x_constraint[i]
                if i in y_constraint:
                    del y_constraint[i]

        # Make iterator over the isolates
        iso = nx.isolates(G2)
        # Use to remove nodes from graph
        G3.remove_nodes_from(iso)
        # Mapping should be empty initially
        mapping = {}
        # Counter
        k = 0
        # Loop over
        for i in range(0, len(G2)):
            # If isolate found
            if nx.is_isolate(G2, i):
                # Increment counter
                k = k + 1
            else:
                # Otherwise save to mapping
                mapping[i] = i - k
        # Use to relabel nodes and constraints
        G3 = nx.relabel_nodes(G3, mapping)
        # Loop over keys in mapping
        for i in mapping:
            # Check if key exists in constraints
            if i in x_constraint:
                x_constraint[mapping[i]] = x_constraint.pop(i)
            if i in y_constraint:
                y_constraint[mapping[i]] = y_constraint.pop(i)

    # length has decreased by 1 => This isn't the problem
    # compute layout
    X = _sgd(G3, y_constraint=y_constraint, x_constraint=x_constraint)

    # draw with colours
    cols_node = list(nx.get_node_attributes(G3, 'color').values())
    cols_edge = list(nx.get_edge_attributes(G3, 'color').values())
    widths_edge = list(nx.get_edge_attributes(G3, 'width').values())
    # Extract x and y labels of nodes
    xvs = nx.get_node_attributes(G3, 'x')
    yvs = nx.get_node_attributes(G3, 'y')
    # Make a copy of xvs to use as labels
    labels = yvs.copy()
    # Vector containing alphabet
    ab = list(string.ascii_lowercase)
    # Loop over x values
    for i in yvs:
        # Check if node is a strain
        if xvs[i] == 1.0:
            labels[i] = ab[yvs[i] - 1]

    nx.draw(G3,
            pos=X,
            node_color=cols_node,
            edge_color=cols_edge,
            width=widths_edge,
            labels=labels,
            arrows=False)
    plt.axis('equal')
    if weight_threshold != 0.0:
        plt.savefig(f'{output_folder}/{G3.graph["name"]}_stress_prun{fI}.png')
    else:
        plt.savefig(f'{output_folder}/{G3.graph["name"]}_stress{fI}.png')
    plt.close()
Exemplo n.º 18
0
 def remove_edge(u, v):
     rm_edge(u, v)  # Remove the edge.
     if is_isolate(graph, v):  # Check if v is isolate.
         rm_node(v)  # Remove the isolate out node.
Exemplo n.º 19
0
def connect_lv_generators(network, allow_multiple_genos_per_load=True):
    """Connect LV generators to existing grids.

    This function searches for unconnected generators in all LV grids and
    connects them.

    It connects

        * generators of voltage level 6
            * to MV-LV station

        * generators of voltage level 7
            * with a nom. capacity of <=30 kW to LV loads of type residential
            * with a nom. capacity of >30 kW and <=100 kW to LV loads of type
                retail, industrial or agricultural
            * to the MV-LV station if no appropriate load is available
              (fallback)

    Parameters
    ----------
    network : :class:`~.grid.network.Network`
        The eDisGo container object
    allow_multiple_genos_per_load : :obj:`bool`
        If True, more than one generator can be connected to one load

    Notes
    -----
    For the allocation, loads are selected randomly (sector-wise) using a
    predefined seed to ensure reproducibility.

    """

    # get predefined random seed and initialize random generator
    seed = int(network.config['grid_connection']['random_seed'])
    #random.seed(a=seed)
    random.seed(a=1234)
    # ToDo: Switch back to 'seed' as soon as line ids are finished, #58

    # get standard equipment
    std_line_type = network.equipment_data['lv_cables'].loc[
        network.config['grid_expansion_standard_equipment']['lv_line']]
    std_line_kind = 'cable'

    # # TEMP: DEBUG STUFF
    # lv_grid_stats = pd.DataFrame(columns=('lv_grid',
    #                                       'load_count',
    #                                       'geno_count',
    #                                       'more_genos_than_loads')
    #                             )

    # iterate over all LV grids
    for lv_grid in network.mv_grid.lv_grids:

        lv_loads = lv_grid.graph.nodes_by_attribute('load')

        # counter for genos in v_level 7
        log_geno_count_vlevel7 = 0

        # generate random list (without replacement => unique elements)
        # of loads (residential) to connect genos (P <= 30kW) to.
        lv_loads_res = sorted([
            lv_load for lv_load in lv_loads
            if 'residential' in list(lv_load.consumption.keys())
        ],
                              key=lambda _: repr(_))

        if len(lv_loads_res) > 0:
            lv_loads_res_rnd = set(
                random.sample(lv_loads_res, len(lv_loads_res)))
        else:
            lv_loads_res_rnd = None

        # generate random list (without replacement => unique elements)
        # of loads (retail, industrial, agricultural) to connect genos
        # (30kW < P <= 100kW) to.
        lv_loads_ria = sorted([
            lv_load for lv_load in lv_loads if any([
                _ in list(lv_load.consumption.keys())
                for _ in ['retail', 'industrial', 'agricultural']
            ])
        ],
                              key=lambda _: repr(_))

        if len(lv_loads_ria) > 0:
            lv_loads_ria_rnd = set(
                random.sample(lv_loads_ria, len(lv_loads_ria)))
        else:
            lv_loads_ria_rnd = None

        for geno in sorted(lv_grid.graph.nodes_by_attribute('generator'),
                           key=lambda x: repr(x)):
            if nx.is_isolate(lv_grid.graph, geno):

                lv_station = lv_grid.station

                # generator is of v_level 6 -> connect to LV station
                if geno.v_level == 6:

                    line_length = calc_geo_dist_vincenty(
                        network=network,
                        node_source=geno,
                        node_target=lv_station)

                    line = Line(id=random.randint(10**8, 10**9),
                                length=line_length / 1e3,
                                quantity=1,
                                kind=std_line_kind,
                                type=std_line_type,
                                grid=lv_grid)

                    lv_grid.graph.add_edge(geno,
                                           lv_station,
                                           line=line,
                                           type='line')

                    # add line to equipment changes to track costs
                    _add_cable_to_equipment_changes(network=network, line=line)

                # generator is of v_level 7 -> assign geno to load
                elif geno.v_level == 7:
                    # counter for genos in v_level 7
                    log_geno_count_vlevel7 += 1

                    # connect genos with P <= 30kW to residential loads, if available
                    if (geno.nominal_capacity <= 30) and (lv_loads_res_rnd
                                                          is not None):
                        if len(lv_loads_res_rnd) > 0:
                            lv_load = lv_loads_res_rnd.pop()
                        # if random load list is empty, create new one
                        else:
                            lv_loads_res_rnd = set(
                                random.sample(lv_loads_res, len(lv_loads_res)))
                            lv_load = lv_loads_res_rnd.pop()

                        # get cable distributor of building
                        lv_conn_target = list(
                            lv_grid.graph.neighbors(lv_load))[0]

                        if not allow_multiple_genos_per_load:
                            # check if there's an existing generator connected to the load
                            # if so, select next load. If no load is available, connect to station.
                            while any([
                                    isinstance(_, Generator)
                                    for _ in lv_grid.graph.neighbors(
                                        list(lv_grid.graph.neighbors(lv_load))
                                        [0])
                            ]):
                                if len(lv_loads_res_rnd) > 0:
                                    lv_load = lv_loads_res_rnd.pop()

                                    # get cable distributor of building
                                    lv_conn_target = list(
                                        lv_grid.graph.neighbors(lv_load))[0]
                                else:
                                    lv_conn_target = lv_grid.station

                                    logger.debug(
                                        'No valid conn. target found for {}. '
                                        'Connected to {}.'.format(
                                            repr(geno), repr(lv_conn_target)))
                                    break

                    # connect genos with 30kW <= P <= 100kW to residential loads
                    # to retail, industrial, agricultural loads, if available
                    elif (geno.nominal_capacity > 30) and (lv_loads_ria_rnd
                                                           is not None):
                        if len(lv_loads_ria_rnd) > 0:
                            lv_load = lv_loads_ria_rnd.pop()
                        # if random load list is empty, create new one
                        else:
                            lv_loads_ria_rnd = set(
                                random.sample(lv_loads_ria, len(lv_loads_ria)))
                            lv_load = lv_loads_ria_rnd.pop()

                        # get cable distributor of building
                        lv_conn_target = list(
                            lv_grid.graph.neighbors(lv_load))[0]

                        if not allow_multiple_genos_per_load:
                            # check if there's an existing generator connected to the load
                            # if so, select next load. If no load is available, connect to station.
                            while any([
                                    isinstance(_, Generator)
                                    for _ in lv_grid.graph.neighbors(
                                        list(lv_grid.graph.neighbors(lv_load))
                                        [0])
                            ]):
                                if len(lv_loads_ria_rnd) > 0:
                                    lv_load = lv_loads_ria_rnd.pop()

                                    # get cable distributor of building
                                    lv_conn_target = list(
                                        lv_grid.graph.neighbors(lv_load))[0]
                                else:
                                    lv_conn_target = lv_grid.station

                                    logger.debug(
                                        'No valid conn. target found for {}. '
                                        'Connected to {}.'.format(
                                            repr(geno), repr(lv_conn_target)))
                                    break

                    # fallback: connect to station
                    else:
                        lv_conn_target = lv_grid.station

                        logger.debug('No valid conn. target found for {}. '
                                     'Connected to {}.'.format(
                                         repr(geno), repr(lv_conn_target)))

                    line = Line(id=random.randint(10**8, 10**9),
                                length=1e-3,
                                quantity=1,
                                kind=std_line_kind,
                                type=std_line_type,
                                grid=lv_grid)

                    lv_grid.graph.add_edge(geno,
                                           lv_station,
                                           line=line,
                                           type='line')

                    # add line to equipment changes to track costs
                    _add_cable_to_equipment_changes(network=network, line=line)

        # warn if there're more genos than loads in LV grid
        if log_geno_count_vlevel7 > len(lv_loads):
            logger.debug(
                'The count of newly connected generators in voltage level 7 ({}) '
                'exceeds the count of loads ({}) in LV grid {}.'.format(
                    str(log_geno_count_vlevel7), str(len(lv_loads)),
                    repr(lv_grid)))
Exemplo n.º 20
0
def make_graphs(G,window,index,communities,commoner_graphs):
    """
    Generate JSON for NetworkX graph. Update commoner graphs.
    
    This method generates all necessary information from a NetworkX
    graph representation and returns it in a JSON format. It also 
    updates the 'dynamic communities' and individual commoner graphs
    (using make_dynamic_communities and build_commoner_data methods)
    
    :param G: NetworkX graph of interactions in time window 
    :param window: 2-tuple containing start and end dates 
    :param index: integer representing time step
    :param communities: list holding NetworkX dynamic communities 
    (filled in by make_dynamic_communities method) 
    :param commoner_graphs: dictionary mapping each commoner node to
    its interaction history (filled in by build_commoner_data method)
    :returns: tuple containing:
              1. Updated dynamic communities
              2. Updated commoner_graphs
              3. JSON representation of NetworkX graph
              4. Updated NetworkX graph 
    """
    edges_to_remove = []    
    tag_edges = []
    #tag_nodes = {}
    tag_counts = {} #Holds counts of each of the tags      
    cumulative = (index == 0)
    create_count = 0
    comment_count = 0
    convo_count = 0
    trans_count = 0
    
    graph_copy = copy.deepcopy(G) #To avoid screwing future iterations        
    nodeiter = G.nodes(data=True)
    edgeiter = G.edges(data=True)   

    #Filter edges outside time window and add count stats 
    for (u,v,c) in edgeiter:
        c['activations'] = []
        if window[0] is not None:
            edge_exists = False
            for intervals in c['spells']:
                if (window[0] <= cf.to_date(intervals[0]) < window[1]):
                    edge_exists = True
                    break
        else:
            edge_exists = True #Edge always exists in static network 
                     
        if edge_exists == False:
            edges_to_remove.append((u,v,c))
        else:
            copy_edge = graph_copy.edges[u,v]
            if window[0] is not None:
                copy_edge['first_active'] = copy_edge['spells'][0][0]
                copy_edge['last_active'] = copy_edge['spells'][len(copy_edge['spells'])-1][0]
            del graph_copy.edges[u,v]['spells']

    #Remove non-existent edges

    graph_copy.remove_edges_from(edges_to_remove)
       
    #Also remove the tag edges so not to influence k-core calculation
    graph_copy.remove_edges_from((tag_edges))

 
    #Filter nodes outside the time window
    nodes_to_remove = []
    zero_nodes = []
    if window[0] is not None:
        for (n,c) in nodeiter:
            graph_copy.nodes[n]['nodemeta'] = []    
            graph_copy.nodes[n]['date'] = cf.to_str(window[0])
            c['date'] = cf.to_str(window[0]) #TODO: Do both lines need to be here?
            if nx.is_isolate(graph_copy,n):
                nodes_to_remove.append(n) 
                G.nodes[n]['binary_active'] += "0"
                graph_copy.nodes[n]['binary_active'] += "0"                
                if 'type' not in c or c['type'] == cf.user_type:
                    zero_nodes.append((n,c))
            else:
                G.nodes[n]['times_active'] += 1
                graph_copy.nodes[n]['times_active'] += 1
                G.nodes[n]['binary_active'] += "1"
                graph_copy.nodes[n]['binary_active'] += "1"
                
        graph_copy.remove_nodes_from(nodes_to_remove)

       
        #Get rid of spells and actions that fall outside the window range 
        graph_copy = filter_spells(graph_copy,window)


                
    #DO THE KCORE CALCULATIONS HERE
    (core_G,colluders) = dx.weighted_core(graph_copy.to_undirected(),window,cumulative)

    #Add the tags back in
    core_G.add_edges_from(tag_edges)

    to_remove = []
    nodeiter = core_G.nodes(data=True)
    for (n,c) in nodeiter:
        if cf.user_type != '' and 'type' not in c: #If there are meant to be types but we can't find any
            to_remove.append(n)
    core_G.remove_nodes_from(to_remove)
    
    #Recommender data is built from the cumulative graph 
    if not cumulative:
        build_commoner_data(core_G,commoner_graphs,zero_nodes)

    #Remove isolated nodes that exist after removing Basic Income 
    core_G.remove_nodes_from(list(nx.isolates(core_G)))

    #Now compare fronts to previous partitions   
    if not cumulative:
        partition = make_dynamic_communities(core_G,communities,index)
    else:
        undirectedGraph = core_G.to_undirected()
        partition = community.best_partition(undirectedGraph,weight='positivemax') 
    
        
    nodeiter = core_G.nodes(data=True)
    for n,c in nodeiter:
        c['cluster'] = partition[n]
        if cf.LABEL_KEY != "":
            c['label'] = c[cf.LABEL_KEY]
        else:
            c['label'] = str(n)
    core_graph_json = json_graph.node_link_data(core_G)

    if window[1] is not None:
        meta_info = {'date':cf.to_str(window[1]),'colluders':colluders}
        core_graph_json.update(meta_info)
    return (communities,commoner_graphs,core_graph_json,core_G)
Exemplo n.º 21
0
def connect_mv_generators(network):
    """Connect MV generators to existing grids.

    This function searches for unconnected generators in MV grids and connects them.

    It connects

        * generators of voltage level 4
            * to HV-MV station

        * generators of voltage level 5
            * with a nom. capacity of <=30 kW to LV loads of type residential
            * with a nom. capacity of >30 kW and <=100 kW to LV loads of type
                retail, industrial or agricultural
            * to the MV-LV station if no appropriate load is available (fallback)

    Parameters
    ----------
    network : :class:`~.grid.network.Network`
        The eDisGo container object

    Notes
    -----
    Adapted from `Ding0 <https://github.com/openego/ding0/blob/\
        21a52048f84ec341fe54e0204ac62228a9e8a32a/\
        ding0/grid/mv_grid/mv_connect.py#L820>`_.
    """

    # get params from config
    buffer_radius = int(
        network.config['grid_connection']['conn_buffer_radius'])
    buffer_radius_inc = int(
        network.config['grid_connection']['conn_buffer_radius_inc'])

    # get standard equipment
    std_line_type = network.equipment_data['mv_cables'].loc[
        network.config['grid_expansion_standard_equipment']['mv_line']]

    for geno in sorted(network.mv_grid.graph.nodes_by_attribute('generator'),
                       key=lambda _: repr(_)):
        if nx.is_isolate(network.mv_grid.graph, geno):

            # ===== voltage level 4: generator has to be connected to MV station =====
            if geno.v_level == 4:

                line_length = calc_geo_dist_vincenty(
                    network=network,
                    node_source=geno,
                    node_target=network.mv_grid.station)

                line = Line(id=random.randint(10**8, 10**9),
                            type=std_line_type,
                            kind='cable',
                            quantity=1,
                            length=line_length / 1e3,
                            grid=network.mv_grid)

                network.mv_grid.graph.add_edge(network.mv_grid.station,
                                               geno,
                                               line=line,
                                               type='line')

                # add line to equipment changes to track costs
                _add_cable_to_equipment_changes(network=network, line=line)

            # ===== voltage level 5: generator has to be connected to MV grid (next-neighbor) =====
            elif geno.v_level == 5:

                # get branches within a the predefined radius `generator_buffer_radius`
                branches = calc_geo_lines_in_buffer(
                    network=network,
                    node=geno,
                    grid=network.mv_grid,
                    radius=buffer_radius,
                    radius_inc=buffer_radius_inc)

                # calc distance between generator and grid's lines -> find nearest line
                conn_objects_min_stack = _find_nearest_conn_objects(
                    network=network, node=geno, branches=branches)

                # connect!
                # go through the stack (from nearest to most far connection target object)
                generator_connected = False
                for dist_min_obj in conn_objects_min_stack:
                    target_obj_result = _connect_mv_node(
                        network=network, node=geno, target_obj=dist_min_obj)

                    if target_obj_result is not None:
                        generator_connected = True
                        break

                if not generator_connected:
                    logger.debug(
                        'Generator {0} could not be connected, try to '
                        'increase the parameter `conn_buffer_radius` in '
                        'config file `config_grid.cfg` to gain more possible '
                        'connection points.'.format(geno))
Exemplo n.º 22
0
 def nodes_filter(x):
     i, v = x
     return i in nodes and (i is not SINK
                            or not is_isolate(graph, SINK))
Exemplo n.º 23
0
def helper_walks(networks,
                 nodes,
                 network_ids,
                 steps=10,
                 number_of_walks=10,
                 degree=True,
                 probabilistic=True,
                 weight="weight"):
    """
    Estimates for networks number_of_walks walks of size steps.

    Parameters:
        networks (list): of networkX graph objects
        nodes (list): of nodes (areas) to be compared.
        network_ids (list): list of network IDs.
        steps (int): is size of random walk
        number_of_walks (int): how many random walks are performed on G
        degree (boolean): if True then the number of random walks performed for each starting node is dependent on its degree and is estimated as degree*number_of_walks.
        probabilisitc (boolean): if True edge weights are taken into account else all edges are considered equal.  If true then weight needs to be set
        weight (str): edge attribute name as contained in G. Weight is evaluated as a similarity

    Returns:
        walks (dict): key is network IDs and value is dict where key is starting node and value is list of performed walks.
                    Each walk is a sublist and contains the node IDs in order of their visit by the random walk.
        
    """

    performed_walks = {}

    for net_id in network_ids:
        performed_walks[net_id] = {}

    cn = 0
    for node in nodes:

        if cn % 100 == 0:
            print("walks for node ", cn, "outof", len(nodes))
        cn = cn + 1

        walks = []

        for i in range(len(networks)):
            net = networks[i]
            network_id = network_ids[i]

            if node in net.nodes():

                if not nx.is_isolate(net, node):
                    if degree:
                        nw = int(number_of_walks * net.degree[node])
                        print("running walks", nw, "for node", node)
                    else:
                        nw = number_of_walks

                    walks = global_distances.perform_random_walks(
                        net,
                        steps=steps,
                        number_of_walks=nw,
                        start=node,
                        probabilistic=probabilistic,
                        weight=weight)

            #save
            performed_walks[network_id][node] = walks

    return performed_walks
Exemplo n.º 24
0
 def __getSourceNodes(self):
     sourceNodes = [
         node for (node, indegree) in self.G.in_degree()
         if (indegree == 0 and not nx.is_isolate(self.G, node))
     ]
     return sourceNodes
Exemplo n.º 25
0
nx.is_directed_acyclic_graph(G)
nx.is_aperiodic(G)

# distance measure  (all for connected graph)
nx.center(Gcc)
nx.diameter(Gcc)
nx.eccentricity(Gcc) 
nx.periphery(Gcc)
nx.radius(Gcc)

# flows (seg fault currently)
#nx.max_flow(Gcc, 1, 2)
#nx.min_cut(G, 1, 2)

# isolates
nx.is_isolate(G, 1)     # False
nx.is_isolate(G, 5)     # True

# HITS
nx.hits(G,max_iter=1000)  # cannot converge?

# maximal independent set
nx.maximal_independent_set(G)

# shortest path
nx.shortest_path(G)     # need "predecessors_iter"
nx.all_pairs_shortest_path(G)
nx.all_pairs_shortest_path_length(G)

nx.predecessor(G, 1)
nx.predecessor(G, 1, 378)
Exemplo n.º 26
0
	def load_data(self,file_name="1"):
		""" This method loads existing data into a graph object.
		"""

		self.contexts_list = {}

		# Loading in data other than the Database    
		other = open("./"+str(file_name)+"_general_data.csv", "r+")
		for line in other:
			data = line.strip().split(";")
			if data[0] == "my_ID":
				if data[1] == 'False':
					self.my_ID = -1
				else:
					self.my_ID = int(data[1])
					self.mynet.add_node(self.my_ID)
			if data[0] == "contexts_list":
				self.contexts_list = {}
				if data[1] != "":
					new_data = data[1].split(",")
					for i in new_data:
						if i != "":
							j = i.split(":")
							self.contexts_list[int(j[0])] = j[1]
			if data[0] == "defined_colors":
				self.defined_colors = [i for i in data[1].split(",")]


		# loading in the database          
		self.friend_db = pd.read_csv("./"+str(file_name)
			+"_friend_data.csv", header=0, index_col=0)    
		new_names = []
		for i in list(self.friend_db.columns.values):
			new_names.append(int(i))
			if self.my_ID != i:
				# adding network ties
				self.mynet.add_node(int(i))
				self.mynet.add_edge(int(i), self.my_ID)

		self.friend_db.columns = new_names

		attrs=list(self.friend_db.index.values)

		# adding the mutual ties connections 
		#and converting to ints from strings)
		for i in list(self.friend_db.columns.values):

			q = self.friend_db[int(i)]["known from"]
			if q==q:
				self.friend_db[int(i)]["known from"] = int(q)

			r = self.friend_db[int(i)]["race"]
			if r==r:
				self.friend_db[int(i)]["race"] = int(r)

			p = self.friend_db[int(i)]["gender"]
			if p==p:
				self.friend_db[int(i)]["gender"] = str(p)

			if type(self.friend_db[int(i)]["mutuals"]) == str:
				mut_str = self.friend_db[int(i)]["mutuals"][1:-1].split(",")
				mutuals = []
				for j in mut_str:
					try:
						mutuals.append(int(j))
					except:
						if j != "":
							mutuals.append(long(j))
						else:
							pass

			self.friend_db[int(i)]["mutuals"] = mutuals
			for j in mutuals:
				if int(j) in new_names:
					try:
						edge = self.mynet[int(j)][int(i)]
					except:
						self.mynet.add_edge(int(j), int(i))

			val = self.friend_db[int(i)]["strong tie"]
			if val != "" and (val==val):
				self.mynet[int(i)][self.my_ID]["strong"] = int(val)

		for edge in self.mynet.edges():
			try:
				self.mynet[int(edge[0])][int(edge[1])]["strong"]
			except:
				self.mynet[int(edge[0])][int(edge[1])]["strong"]=0
		isos = []
		bu = nx.Graph()
		bu.add_nodes_from(self.mynet.nodes())
		bu.add_edges_from(self.mynet.edges())
		bu.remove_node(self.my_ID)
		for n in bu.nodes():
			if nx.is_isolate(bu, n):
				bu.remove_node(n)
				isos.append(n)
		self.no_ego_net = bu
		
		self.b_cent = self.betweenness_centrality(withme=False)
		self.c_cent = self.closeness_centrality(withme=False)
		self.d_cent = self.degree_centrality(withme=False)
		self.e_cent = self.eigenvector_centrality(iterations=100,withme=False)
		for iso in isos:
			self.b_cent[iso]=-1
			self.c_cent[iso]=-1
			self.d_cent[iso]=-1
			self.e_cent[iso]=-1
		self.b_cent_w = self.betweenness_centrality(withme=True)
		self.c_cent_w = self.closeness_centrality(withme=True)
		self.d_cent_w = self.degree_centrality(withme=True)
		self.e_cent_w = self.eigenvector_centrality(iterations=100,withme=True)

		print "Data successfully loaded"
Exemplo n.º 27
0
def _not_isolated_nodes(G):
    return filter(lambda n: not nx.is_isolate(G, n), G.nodes)
Exemplo n.º 28
0
    def __init__(self,
                 obj,
                 workflow=False,
                 nested=True,
                 edge_data=(),
                 node_data=(),
                 node_function=(),
                 draw_outputs=0,
                 view=False,
                 node_styles=None,
                 depth=-1,
                 function_module=False,
                 name=None,
                 comment=None,
                 directory=None,
                 filename=None,
                 format='svg',
                 engine=None,
                 encoding=None,
                 graph_attr=None,
                 node_attr=None,
                 edge_attr=None,
                 body=None,
                 parent_dot='',
                 _saved_outputs=None):
        """
        Plots the Dispatcher with a graph in the DOT language with Graphviz.

        :param workflow:
           If True the latest solution will be plotted, otherwise the dmap.
        :type workflow: bool, optional

        :param view:
            Open the rendered directed graph in the DOT language with the sys
            default opener.
        :type view: bool, optional

        :param nested:
            If False the sub-dispatcher nodes are plotted on the same graph,
            otherwise they can be viewed clicking on the node that has an URL
            link.
        :type nested: bool, optional

        :param edge_data:
            Edge attributes to view.
        :type edge_data: tuple[str], optional

        :param node_data:
            Data node attributes to view.
        :type node_data: tuple[str], optional

        :param node_function:
            Function node attributes to view.
        :type node_function: tuple[str], optional

        :param draw_outputs:
            It modifies the defaults data node and edge attributes to view.
            If `draw_outputs` is:

                - 1: node attribute 'output' is drawn.
                - 2: edge attribute 'value' is drawn.
                - 3: node 'output' and edge 'value' attributes are drawn.
                - otherwise: node 'output' and edge 'value' attributes are not
                  drawn.
        :type draw_outputs: int, optional

        :param node_styles:
            Default node styles according to graphviz node attributes.
        :type node_styles: dict[str|Token, dict[str, str]]

        :param depth:
            Depth of sub-dispatch plots. If negative all levels are plotted.
        :type depth: int, optional

        :param function_module:
            If True the function labels are plotted with the function module,
            otherwise only the function name will be visible.
        :type function_module: bool, optional

        :param name:
            Graph name used in the source code.
        :type name: str

        :param comment:
            Comment added to the first line of the source.
        :type comment: str

        :param directory:
            (Sub)directory for source saving and rendering.
        :type directory: str, optional

        :param filename:
            File name for saving the source.
        :type filename: str, optional

        :param format:
            Rendering output format ('pdf', 'png', ...).
        :type format: str, optional

        :param engine:
            Layout command used ('dot', 'neato', ...).
        :type engine: str, optional

        :param encoding:
            Encoding for saving the source.
        :type encoding: str, optional

        :param graph_attr:
            Dict of (attribute, value) pairs for the graph.
        :type graph_attr: dict, optional

        :param node_attr:
            Dict of (attribute, value) pairs set for all nodes.
        :type node_attr: dict, optional

        :param edge_attr:
            Dict of (attribute, value) pairs set for all edges.
        :type edge_attr: dict, optional

        :param body:
            Dict of (attribute, value) pairs to add to the graph body.
        :type body: dict, optional

        :return:
            A directed graph source code in the DOT language.
        :rtype: graphviz.dot.Digraph

        Example:

        .. dispatcher:: dsp
           :opt: graph_attr={'ratio': '1'}
           :code:

            >>> from co2mpas.dispatcher import Dispatcher
            >>> dsp = Dispatcher(name='Dispatcher')
            >>> def fun(a):
            ...     return a + 1, a - 1
            >>> dsp.add_function('fun', fun, ['a'], ['b', 'c'])
            'fun'
            >>> dsp.plot(view=False, graph_attr={'ratio': '1'})
            <co2mpas.dispatcher.utils.drw.DspPlot object at 0x...>
        """

        from .sol import Solution
        from .. import Dispatcher
        from networkx import is_isolate
        self._edge_data = edge_data
        self._node_data = node_data
        self._node_function = node_function
        self._graph_attr = graph_attr
        self._node_attr = node_attr
        self._edge_attr = edge_attr
        self._body = body

        self.node_styles = _upt_styles(node_styles or {}, self.__node_styles)
        self.depth = depth
        self.draw_outputs = draw_outputs
        self.function_module = function_module
        self._saved_outputs = _saved_outputs or {}
        self.workflow = workflow

        inputs, outputs = (), ()
        obj = parent_func(obj)

        if isinstance(obj, Solution):
            dsp, sol = obj.dsp, obj
        elif isinstance(obj, SubDispatchFunction):
            dsp, sol = obj.dsp, obj.solution
            inputs, outputs = obj.inputs or (), obj.outputs or ()
        elif isinstance(obj, SubDispatch):
            dsp, sol = obj.dsp, obj.solution
            if obj.output_type != 'all':
                outputs = obj.outputs or ()
        elif isinstance(obj, Dispatcher):
            dsp, sol = obj, obj.solution
        else:
            raise ValueError('Type %s not supported.' % type(obj).__name__)

        self.dsp = dsp

        _body = self.__body.copy()
        if workflow:
            _body['label'] = '<%s workflow>'
            self.g = g = sol.workflow
            self.obj = sol
        else:
            _body['label'] = '<%s>'
            self.g = g = dsp.dmap
            self.obj = obj

        draw_outputs = int(draw_outputs)
        if draw_outputs == 1:
            i, j = -1, None
        elif draw_outputs == 2:
            i, j = None, -1
        elif draw_outputs == 3:
            i = j = None
        else:
            i = j = -1

        self.node_data = node_data or self.__node_data[:j]
        self.node_function = node_function or self.__node_function
        self.edge_data = tuple(k if k != 'weight' else dsp.weight
                               for k in edge_data or self.__edge_data[:i])

        name = name or dsp.name or '%s %d' % (type(dsp).__name__, id(dsp))
        self.nested = nested

        if filename:
            if directory is not None:
                filename = osp.join(directory, filename)
            directory, filename = osp.split(osp.abspath(filename))
        else:
            if directory is None:
                directory = mkdtemp('')

            filename = _encode_file_name(name[8:] if parent_dot else name)

        if osp.splitext(filename)[1] != self._default_extension:
            filename = '%s.%s' % (filename, self._default_extension)
        name = self._html_encode(name)
        _body['label'] = _body['label'] % name
        body = combine_dicts(_body, body or {})
        super(DspPlot, self).__init__(
            name=name,
            comment=comment,
            filename=filename,
            directory=directory,
            format=format,
            engine=engine,
            encoding=encoding,
            graph_attr=combine_dicts(self.__graph_attr, graph_attr or {}),
            node_attr=combine_dicts(self.__node_attr, node_attr or {}),
            edge_attr=combine_dicts(self.__edge_attr, edge_attr or {}),
            body=['%s = %s' % (k, v) for k, v in body.items()])

        self.id_map = self.get_id_map(parent_dot,
                                      chain(g.node, inputs, outputs))

        if not g.node or not (g.edge or inputs or outputs):
            self._set_data_node(EMPTY, {})

        if START in g.node or (inputs and START not in g.node):
            self._set_data_node(START, {})

        if outputs and END not in g.node:
            self._set_data_node(END, {})

        for k, v in sorted(g.node.items()):
            if k not in dsp.nodes or (k is SINK and is_isolate(g, SINK)):
                continue

            self._set_node(k, v)

        edges = {(u, v): a for u, v, a in g.edges_iter(data=True)}

        for i, v in enumerate(inputs):
            n = (START, v)
            edges[n] = combine_dicts(edges.get(n, {}), {'inp_id': i})

        for i, u in enumerate(outputs):
            n = (u, END)
            edges[n] = combine_dicts(edges.get(n, {}), {'out_id': i})

        for (u, v), a in sorted(edges.items()):
            self._set_edge(u, v, a)

        if view:
            self.render(cleanup=True, view=True)
Exemplo n.º 29
0
 def remove_edge(u, v):
     rm_edge(u, v)  # Remove the edge.
     if is_isolate(graph, v):  # Check if v is isolate.
         rm_node(v)  # Remove the isolate out node.
Exemplo n.º 30
0
def main():
    global seqDict
    global rna_gap
    global g
    global args
    global scaffolding_type_1
    global scaffolding_type_2

    """
    Parsing arguments and initiating variables
    """

    if args.d:
        logging.basicConfig(format='%(asctime)s::%(levelname)s::%(message)s',filename=args.log, level=logging.DEBUG)
    elif args.v:
        logging.basicConfig(format='%(asctime)s::%(levelname)s::%(message)s',filename=args.log, level=logging.INFO)
    else:
        logging.basicConfig(format='%(asctime)s::%(levelname)s::%(message)s',filename=args.log)
    rna_gap=int(args.rna_gap)
    logging.info("Begin the analysis with Scaff2link version "+version)
    mkdir_p(args.outDir)
    # pour avoir les arguments c'est args.fasta / args.phylo / args.rna etc ... ça te renvoie la string (type string)
    g=nx.MultiDiGraph()
    ## Adding all vertexes to the graph

    """
    Reading fasta
    """

    seqDict=dict()
    for record in SeqIO.parse(args.fasta, "fasta"):
        seqDict[record.id]=record.seq
        g.add_node(record.id,
        length=len(record.seq),
        log10Len=math.log10(len(record.seq)),
        strand='')
    logging.info("Number of nodes parsed: "+str(len(g.nodes)))

    """
    Adding edges from Ragout :
    """

    logging.info("Parsing edges from synteny information using ragout: "+args.phylo)
    scaffolding_type_1="synteny"
    current_scaffold=""
    fromName=""
    gap_length=0
    with open(args.phylo) as f:
        for line in f:
            line=line.rstrip("\n")
            if line[0] != "#" and line !="":
                elems=line.split("\t")
                if current_scaffold == elems[0]:
                    if elems[4] == "N":
                        gap_length=int(elems[5])
                    else:
                        if not (fromName in g.nodes and elems[5] in g.nodes):
                            logging.critical("Unknown node name when parsing ragout edge from "+fromName+" to "+elems[5])
                            sys.exit(1)
                        g.add_edge(fromName,elems[5],type=scaffolding_type_1,fromStrand=from_orientation,toStrand=elems[8],gap=gap_length, readsCount=-1)
                        g.nodes[fromName]["strand"]=from_orientation
                        g.nodes[elems[5]]["strand"]=elems[8]
                        fromName=elems[5]
                        from_orientation=elems[8]
                else:
                    current_scaffold=elems[0]
                    fromName=elems[5]
                    from_orientation=elems[8]

    """
    Parsing edges from Agouti :
    """

    logging.info("Parsing joint pairs in edges from rna-seq information using agouti: "+args.rna)
    scaffolding_type_2="rna-seq"
    joint_pairs=dict()
    with open(args.rna) as f:
        for line in f:
            line=line.rstrip()
            elems=line.split("\t")
            fromName=elems[1]
            toName=elems[4]
            if args.lib_type[0]=='f':
                FromStrand=elems[3]
            else:
                FromStrand=strand_reverse(elems[3])
            if args.lib_type[1]=='f':
                ToStrand=elems[6]
            else:
                ToStrand=strand_reverse(elems[6])
            key="\t".join([FromStrand,fromName,ToStrand,toName])
            if key not in joint_pairs.keys():
                joint_pairs[key]=1
            else:
                joint_pairs[key]+=1

    """
    Adding parsed edges from Agouti :
    """

    logging.info("Adding rna-seq based edges to the scaffolding graph")
    for key in joint_pairs.keys():
        if joint_pairs[key]>(int(args.min_reads)-1):
            key_list=key.split("\t")
            FromStrand=key_list[0]
            fromName=key_list[1]
            ToStrand=key_list[2]
            toName=key_list[3]
            if not (fromName in g.nodes and toName in g.nodes):
                logging.critical("Unknown node name when parsing agouti edge from "+fromName+" to "+toName)
                sys.exit(1)
            # Here we add the edge, but try to simplify it if it already exist because of Ragout
            numFromTo=g.number_of_edges(fromName,toName)
            add_stranded_edge(fromName,toName,FromStrand,ToStrand,scaffolding_type_2,joint_pairs[key])

    """
    Finalizing and reporting the initial graph (end of step 00)
    """

    logging.info("Scaffolding graph completed, collecting nodes statistics")
    TotalNodes=len(g.nodes)
    ConnectedNodes=TotalNodes
    ConsistantNodes=TotalNodes
    node2remove=list()
    for node in g.nodes:
        if nx.is_isolate(g,node): # WAY TO GET THE DEGREE OF NODE
            #g.remove_node(node)
            node2remove.append(node)
            ConnectedNodes-=1
            ConsistantNodes-=1
        elif g.nodes[node]["strand"]=='.':
            ConsistantNodes-=1
    for node in node2remove:
        g.remove_node(node)
    logging.info("Out of "+str(TotalNodes)+" initial nodes, "+str(ConnectedNodes)+" are connected, and among them "+str(ConsistantNodes)+" are strand consistent")
    if args.v : 
        logging.info("Collecting edges statistics")
        edgeCounter=Counter(list(g.edges))
        t1=0
        t2=0
        t12=0
        edges_list=list(g.edges)
        edges_set=set(g.edges)
        for edge in edgeCounter.keys():
            for key in range(0,edgeCounter[edge]):
                if g[edge[0]][edge[1]][key]["type"]==scaffolding_type_1:
                    t1+=1
                elif g[edge[0]][edge[1]][key]["type"]==scaffolding_type_2:
                    t2+=1
                elif g[edge[0]][edge[1]][key]["type"]==scaffolding_type_1+"_AND_"+scaffolding_type_2:
                    t12+=1
                else:
                    logging.critical("unknown scaffold type")
                    sys.exit(1)
        logging.info("Edges statistics : \n"+
            ";".join([scaffolding_type_1,scaffolding_type_2,scaffolding_type_1+"_AND_"+scaffolding_type_2])+
            "\n"+";".join([str(t1),str(t2),str(t12)]))
    mkdir_p(args.outDir+'/00-complete_graph')
    nx.write_graphml(g, args.outDir+"/00-complete_graph/graph.graphml")

    """
    Step 01 : chain simplification
    """

    logging.info("starting first chain simplification")
    setNodes=set(g.nodes)
    basename="scaff2links_chain_"
    count_name=1
    while len(setNodes)!=0:
        try:
            node=setNodes.pop()
            if g.nodes[node]["strand"]!='.':
                inspectIn=True
                inspectOut=True
                chain=[node]
                nodeIn=node
                nodeOut=node
                logging.debug("Chain simplification started on node:"+node)
                while inspectIn:
                    if len(g.in_edges(nodeOut))==1 :
                        possibleNodeOut=list(g.in_edges(nodeOut))[0][0]
                        if g.has_edge(nodeOut,possibleNodeOut):
                            inspectIn=False
                            logging.debug("STOP")
                        else:
                            logging.debug("IN chain extension: (in)"+nodeOut+"\t(out)"+possibleNodeOut)
                            if (len(g.out_edges(possibleNodeOut))==1) and (g.nodes[possibleNodeOut]["strand"]!='.'):
                                logging.debug("CONTINUE")
                                nodeOut=possibleNodeOut
                                chain.append(nodeOut)
                                setNodes.remove(nodeOut)
                            else : 
                                inspectIn=False
                                logging.debug("STOP")
                    else: inspectIn=False
                while inspectOut:
                    if len(g.out_edges(nodeIn))==1 :
                        possibleNodeIn=list(g.out_edges(nodeIn))[0][1]
                        if g.has_edge(possibleNodeIn,nodeIn):
                            inspectOut=False
                            logging.debug("STOP")
                        else:
                            logging.debug("OUT chain extension: (out)"+nodeIn+"\t(in)"+possibleNodeIn)
                            if (len(g.in_edges(possibleNodeIn))==1) and (g.nodes[possibleNodeIn]["strand"]!='.'):
                                logging.debug("CONTINUE")
                                nodeIn=possibleNodeIn
                                chain.append(nodeIn)
                                setNodes.remove(nodeIn)
                            else: 
                                inspectOut=False
                                logging.debug("STOP")
                    else: inspectOut=False
                name=basename+str(count_name)
                count_name+=1
                def_chain=chain_simplification(chain=chain,start=nodeOut,end=nodeIn,name=name,chain_is_path=False)
                logging.debug(name+"\t"+def_chain)
        except:
            nx.write_graphml(g, args.outDir+"/error.graphml")
            print(traceback.format_exc())
            logging.critical("error during first chain simplification, the current graph have been written")
            sys.exit(1)

    """
    end of step 01 writing...
    """

    mkdir_p(args.outDir+'/01-simplified_graph')
    nx.write_graphml(g, args.outDir+"/01-simplified_graph/graph.graphml")
    node2remove=list()
    for node in g.nodes:
        if nx.is_isolate(g,node): # WAY TO GET THE DEGREE OF NODE
            #g.remove_node(node)
            node2remove.append(node)
    for node in node2remove:
        g.remove_node(node)
    with open(args.outDir+"/01-simplified_graph/scaffolds.fasta", "w") as output_handle:
        for key in seqDict.keys():
            SeqIO.write(SeqRecord(seqDict[key],id=key,description=''), output_handle, "fasta")

    """
    Step 02 : dag simplification
    """

    logging.info("starting dag simplification")
    logging.info("Find remaining bridges")
    g_broken=nx.Graph(g.copy())
    edge2remove=list()
    for e in nx.bridges(g_broken):
        edge2remove.append(e)
    for e_ in edge2remove:
        g_broken.remove_edge(e_[0],e_[1])
    basename="scaff2links_dag_"
    count_name=1
    logging.info("Connected component analysis for DAG")
    for nset in nx.connected_components(g_broken):
        subg=g.subgraph(nset)
        if nx.is_directed_acyclic_graph(subg) and len(list(subg.nodes()))>1:
            lpath=nx.dag_longest_path(subg)
            logging.debug("DAG found :"+str(nset)+"| type="+str(type(nset)))
            if len(list(subg.nodes()))==2:
                logging.warn("A connected component resulting from the graph where all bridges have been removed is of size 2, which is mathematically unexpected")
            if len(lpath)==len(nset):
                logging.debug("DAG with all nodes in the longest path: ("+")->-(".join(lpath)+')')
                # check neighbor
                pos=-1
                start=0
                for node in lpath:
                    pos+=1
                    add_set=set()
                    if node==lpath[0] or pos == start:
                        for e in list(g.in_edges(node)):
                            add_set.add(e[0])
                    if node==lpath[-1]:
                        for e in list(g.out_edges(node)):
                            add_set.add(e[1])
                    if not (set(nx.all_neighbors(g,node)) <= (add_set | nset)):
                        logging.debug("Found cutting node in DAG: "+lpath[pos])
                        for e in list(g.out_edges(node)):
                            add_set.add(e[1])
                        if (set(nx.all_neighbors(g,node)) <= (add_set | nset)) and (pos-start>0):
                            logging.debug("cutted DAG simplification (including the cutting node) at "+lpath[pos]+": ("+")->-(".join([ lpath[x] for x in range(start,pos+1) ] )+')')
                            chain_simplification([ lpath[x] for x in range(start,pos+1) ],lpath[start],lpath[pos],basename+str(count_name),chain_is_path=True)
                            count_name+=1
                            start=pos+1
                            checkStart=False
                        elif pos-start>1:
                            logging.debug("cutted DAG simplification (excluding the cutting node) at "+lpath[pos]+": ("+")->-(".join([ lpath[x] for x in range(start,pos) ] )+')')
                            chain_simplification([ lpath[x] for x in range(start,pos) ],lpath[start],lpath[pos-1],basename+str(count_name),chain_is_path=True)
                            count_name+=1
                            checkStart=True
                        else: checkStart=True
                        if checkStart:
                            start=pos
                            for e in list(g.out_edges(node)):
                                if not e[1] in nset:
                                    start=pos+1
                                    logging.debug("NB: Cutting node excluded as start")
                                    break
                            if start==pos:
                                logging.debug("NB: Cutting node included as start")
                if pos-start>0:
                    logging.debug("Final DAG simplification : ("+")->-(".join([ lpath[x] for x in range(start,pos+1) ] )+')')
                    chain_simplification([ lpath[x] for x in range(start,pos+1) ],lpath[start],lpath[pos],basename+str(count_name),chain_is_path=True)
                    count_name+=1
                start=pos+1

    """
    end of step 02 writing...
    """

    logging.info("Write graph and fasta after DAG simplification")
    mkdir_p(args.outDir+'/02-after_dag_graph')
    nx.write_graphml(g, args.outDir+"/02-after_dag_graph/graph.graphml")
    node2remove=list()
    for node in g.nodes:
        if nx.is_isolate(g,node): # WAY TO GET THE DEGREE OF NODE
            #g.remove_node(node)
            node2remove.append(node)
    for node in node2remove:
        g.remove_node(node)
    with open(args.outDir+"/02-after_dag_graph/scaffolds.fasta", "w") as output_handle:
        for key in seqDict.keys():
            SeqIO.write(SeqRecord(seqDict[key],id=key,description=''), output_handle, "fasta")