def training(): # train_generator, validation_generator = prepare_data() # train_generator, validation_generator, test_generator = prepare_data() conv_network = ResNet50(include_top=False, weights='imagenet', input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)) for layer in conv_network.layers[:-3]: layer.trainable = False model = Sequential() model.add(conv_network) # model.add(AveragePooling2D((7, 7), name='avg_pool')) model.add(Flatten()) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) # model.summary() model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.001), metrics=['accuracy']) print(neuraLint.check(model))
import neuraLint from keras.layers.core import Dense from keras import Sequential model = Sequential() model.add(Dense(10, input_dim=1, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dense(1)) model.compile(loss='mse', optimizer='adam') print(neuraLint.check(model))
alpha, depth_multiplier, strides=(2, 2), block_id=4) x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11) x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12) x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13) x = Model(img_input, x) x.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics='accuracy') print(neuraLint.check(x))
pooling_regions = 7 input_shape = (num_rois, 512, 7, 7) out_roi_pool = roiPoolingConv.RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois]) out = TimeDistributed(Flatten(name='flatten'))(out_roi_pool) out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out) out = TimeDistributed(Dropout(0.5))(out) out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out) out = TimeDistributed(Dropout(0.5))(out) out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out) # note: no regression target for bg class out_regr = TimeDistributed(Dense(4 * (nb_classes - 1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out) return [out_class, out_regr] img_input = Input(shape=(100, 100, 3)) roi_input = Input(shape=(None, 4)) shared_layers = nn_base(img_input, trainable=True) # define the RPN, built on the base layers rpn: List[Optional[Any]] = rpn(shared_layers, 60) # classifier = classifier(shared_layers, roi_input, 2, 5, trainable=True) rpn = Model(img_input, rpn[:2]) print(neuraLint.check(rpn)) # model.compile(optimizer='adam', loss=dice_coef_loss, metrics=[dice_coef])
model.add(Conv2D(256, (3, 3), padding='same')) model.add(Dropout(0.2)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=2)) model.add(Conv2D(256, (3, 3), padding='same')) model.add(Dropout(0.25)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=2)) model.add(Conv2D(256, (3, 3), padding='same')) model.add(Dropout(0.25)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=2)) model.add(Flatten()) model.add(Dense(256)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.8)) model.add(Dense(3)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) report = neuraLint.check(model) print(report)