Exemplo n.º 1
0
def b_3(plot=False):
    units = [1, 2, 3, 10, 20, 40]
    lrs = [0.09, 0.09, 0.1, 0.1, 0.1, 0.01]
    # lrs = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
    for unit, lr in zip(units, lrs):
        print("\nNeural_Network")
        model = Neural_Network(len(train_data[0]), [unit],
                               activation="sigmoid")
        print(model)
        model.train(train_data,
                    train_labels,
                    max_iter=10000,
                    eeta=lr,
                    batch_size=len(train_data),
                    threshold=1e-6,
                    decay=False)
        pred = model.predict(train_data)
        train_acc = accuracy_score(train_labels, pred) * 100
        print("Train Set Accuracy: ", train_acc)

        pred = model.predict(test_data)
        test_acc = accuracy_score(test_labels, pred) * 100
        print("Test Set Accuracy: ", test_acc)
        if plot:
            plot_decision_boundary(
                model.predict, np.array(test_data), np.array(test_labels),
                "Neural_Network Test Set\n Units in Hidden layers: %s\nAccuracy: %f"
                % (str(model.hidden_layer_sizes), test_acc))
Exemplo n.º 2
0
def b_2(plot=False, units=[5], eeta=0.1, threshold=1e-6):
    print("\nNeural_Network")
    model = Neural_Network(len(train_data[0]), units, activation="sigmoid")
    print(model)
    model.train(train_data,
                train_labels,
                max_iter=5000,
                eeta=eeta,
                batch_size=len(train_data),
                threshold=threshold,
                decay=False)
    pred = model.predict(train_data)
    train_acc = accuracy_score(train_labels, pred) * 100
    print("Train Set Accuracy: ", train_acc)

    pred = model.predict(test_data)
    test_acc = accuracy_score(test_labels, pred) * 100
    print("Test Set Accuracy: ", test_acc)
    if plot:
        plot_decision_boundary(
            model.predict, np.array(train_data), np.array(train_labels),
            "Neural_Network Train Set\n Units in Hidden layers: %s\nAccuracy: %f"
            % (str(model.hidden_layer_sizes), train_acc))
        plot_decision_boundary(
            model.predict, np.array(test_data), np.array(test_labels),
            "Neural_Network Test Set\n Units in Hidden layers: %s\nAccuracy: %f"
            % (str(model.hidden_layer_sizes), test_acc))
Exemplo n.º 3
0
def c_2(plot=False, units=[100], activation="sigmoid", eeta=0.1):
    print("\nNeural_Network MNIST")
    model = Neural_Network(len(mnist_trd[0]), units, activation=activation)
    print(model)
    model.train(mnist_trd,
                mnist_trl,
                max_iter=300,
                eeta=eeta,
                batch_size=100,
                decay=True,
                threshold=1e-3)
    pred = model.predict(mnist_trd)
    train_acc = accuracy_score(mnist_trl, pred) * 100
    print("Train Set Accuracy: ", train_acc)

    pred = model.predict(mnist_ted)
    test_acc = accuracy_score(mnist_tel, pred) * 100
    print("Test Set Accuracy: ", test_acc)
Exemplo n.º 4
0
class Classifier:

    def __init__(self, classifier_type, **kwargs):
        """
        Initializer. Classifier_type should be a string which refers
        to the specific algorithm the current classifier is using.
        Use keyword arguments to store parameters
        specific to the algorithm being used. E.g. if you were 
        making a neural net with 30 input nodes, hidden layer with
        10 units, and 3 output nodes your initalization might look
        something like this:

        neural_net = Classifier(weights = [], num_input=30, num_hidden=10, num_output=3)

        Here I have the weight matrices being stored in a list called weights (initially empty).
        """
        self.classifier_type = classifier_type
        self.params = kwargs
        """
        The kwargs you inputted just becomes a dictionary, so we can save
        that dictionary to be used in other methods.
        """


    def train(self, training_data):
        """
        Data should be nx(m+1) numpy matrix where n is the 
        number of examples and m is the number of features
        (recall that the first element of the vector is the label).

        I recommend implementing the specific algorithms in a
        seperate module and then determining which method to call
        based on classifier_type. E.g. if you had a module called
        neural_nets:

        if self.classifier_type == 'neural_net':
            import neural_nets
            neural_nets.train_neural_net(self.params, training_data)

        Note that your training algorithms should be modifying the parameters
        so make sure that your methods are actually modifying self.params

        You should print the accuracy, precision, and recall on the training data.
        """

        if self.classifier_type == 'neural_network':
            #change num_input, num_output based upon the data
            self.nn = Neural_Network("neural_network",weights = [], num_input=self.params['num_input'], num_hidden=1000, num_output=self.params['num_output'], alt_weight=self.params['one']=='1', momentum=self.params['two']=='1')
            self.nn.train(training_data)
        elif self.classifier_type == 'naive_bayes':
            self.nb = Naive_Bayes("naive_bayes")
            self.nb.train(training_data)
        elif self.classifier_type =='decision_tree':
            self.dt = Decision_Tree("decision_tree", pruning=self.params['one']=='1',
                    info_gain_ratio=self.params['two']=='1')
            self.dt.train(training_data)

    def predict(self, data):
        """
        Predict class of a single data vector
        Data should be 1x(m+1) numpy matrix where m is the number of features
        (recall that the first element of the vector is the label).

        I recommend implementing the specific algorithms in a
        seperate module and then determining which method to call
        based on classifier_type.

        This method should return the predicted label.
        """

    def test(self, test_data):
        """
        Data should be nx(m+1) numpy matrix where n is the 
        number of examples and m is the number of features
        (recall that the first element of the vector is the label).

        You should print the accuracy, precision, and recall on the test data.
        """
        
        #pdb.set_trace()
        #Accuracy, Recall, and Precision
        relevant_and_retrieved, relevant, retrieved, total, hit = 0, 0, 0, 0, 0
        for person in test_data:
            predict = 0
            if self.classifier_type == 'neural_network':
                predict = self.nn.predict(person)
            elif self.classifier_type == 'naive_bayes':
                predict = self.nb.predict(person)
            elif self.classifier_type == 'decision_tree':
                predict = self.dt.predict(person)
            if predict == person[0]:
                if predict == 0:
                    relevant_and_retrieved += 1
                hit += 1
            if person[0] == 0:
                relevant += 1
            if predict == 0:
                retrieved += 1
            total += 1
        accuracy = hit/float(total)
        recall = relevant_and_retrieved/float(relevant)
        precision = relevant_and_retrieved/float(retrieved)
        print "Accuracy: ", accuracy
        print "Precision ", precision
        print "Recall: " , recall
Exemplo n.º 5
0
Arquivo: main.py Projeto: 226252/PAMSI
NN=Neural_Network()

if input("Wanna train model? y/N ") =='y':
    layers = [800,400]
    NN.initialize(layers)
    NN.train(20)
   
    if input("Wanna save model? Y/n ") !='n' :
        NN.save_model()

        
elif input("Wanna load from file? Y/n ")!='n' :
    NN.load_model()

else :
    print("Exit")
    exit()  
    
    
# Fit the model
# Final evaluation of the model
if input("Wanna test model? y/N ") =='y':
    NN.test()

#space for insertion of numpy array from user:
while input("Wanna input some stuff? Y/n ")!='n':
    
    NN.predict(plotter.input_stuff())
    plotter.flush()
    
#data = ld.load_iris(.75)

#data = ld.load_monks(3)

classify =  nb.train(data[0])

#nb.train(iris[0])
#pdb.set_trace()
#nb.test(congress[1])

tot, hit = 0, 0
ones = 0
zeros = 0
twos = 0
for person in data[1]:
  predict = nb.predict(person)
  if predict == person[0]:
  	hit += 1
  tot += 1
  if predict == 1:
  	ones += 1
  elif predict == 0:
  	zeros += 1
  else:
  	twos += 1
  #pdb.set_trace()

print hit, tot, hit / float(tot)
print zeros, ones, twos