Exemplo n.º 1
0
    def __init__(self,
                 fsm: FileStructManager,
                 is_continue: bool,
                 network_name: str = None):
        super().__init__()
        self.__writer = None
        self.__txt_log_file = None

        fsm.register_dir(self)
        dir = fsm.get_path(self)
        if dir is None:
            return

        dir = os.path.join(dir,
                           network_name) if network_name is not None else dir

        if not (fsm.in_continue_mode()
                or is_continue) and os.path.exists(dir) and os.path.isdir(dir):
            idx = 0
            tmp_dir = dir + "_v{}".format(idx)
            while os.path.exists(tmp_dir) and os.path.isdir(tmp_dir):
                idx += 1
                tmp_dir = dir + "_v{}".format(idx)
            dir = tmp_dir

        os.makedirs(dir, exist_ok=True)
        self.__writer = SummaryWriter(dir)
        self.__txt_log_file = open(os.path.join(dir, "log.txt"),
                                   'a' if is_continue else 'w')
def train():
    model = resnet18(classes_num=1, in_channels=3, pretrained=True)
    train_config = TrainConfig([train_stage, val_stage],
                               torch.nn.BCEWithLogitsLoss(),
                               torch.optim.Adam(model.parameters(), lr=1e-4))

    file_struct_manager = FileStructManager(base_dir='data', is_continue=False)

    trainer = Trainer(model, train_config, file_struct_manager,
                      torch.device('cuda:0')).set_epoch_num(2)

    tensorboard = TensorboardMonitor(file_struct_manager,
                                     is_continue=False,
                                     network_name='PortraitSegmentation')
    log = LogMonitor(file_struct_manager).write_final_metrics()
    trainer.monitor_hub.add_monitor(tensorboard).add_monitor(log)
    trainer.enable_best_states_saving(
        lambda: np.mean(train_stage.get_losses()))

    trainer.enable_lr_decaying(
        coeff=0.5,
        patience=10,
        target_val_clbk=lambda: np.mean(train_stage.get_losses()))
    trainer.add_on_epoch_end_callback(
        lambda: tensorboard.update_scalar('params/lr',
                                          trainer.data_processor().get_lr()))
    trainer.train()
Exemplo n.º 3
0
    def test_lr_decaying(self):
        fsm = FileStructManager(base_dir=self.base_dir, is_continue=False)
        model = SimpleModel()
        metrics_processor = MetricsProcessor()
        stages = [
            TrainStage(
                TestDataProducer([[{
                    'data': torch.rand(1, 3),
                    'target': torch.rand(1)
                } for _ in list(range(20))]]), metrics_processor),
            ValidationStage(
                TestDataProducer([[{
                    'data': torch.rand(1, 3),
                    'target': torch.rand(1)
                } for _ in list(range(20))]]), metrics_processor)
        ]
        trainer = Trainer(
            model,
            TrainConfig(stages, SimpleLoss(),
                        torch.optim.SGD(model.parameters(), lr=0.1)),
            fsm).set_epoch_num(10)

        def target_value_clbk() -> float:
            return 1

        trainer.enable_lr_decaying(0.5, 3, target_value_clbk)
        trainer.train()

        self.assertAlmostEqual(trainer.data_processor().get_lr(),
                               0.1 * (0.5**3),
                               delta=1e-6)
Exemplo n.º 4
0
    def test_savig_states(self):
        fsm = FileStructManager(base_dir=self.base_dir, is_continue=False)
        model = SimpleModel()
        metrics_processor = MetricsProcessor()
        stages = [
            TrainStage(
                TestDataProducer([[{
                    'data': torch.rand(1, 3),
                    'target': torch.rand(1)
                } for _ in list(range(20))]]), metrics_processor)
        ]
        trainer = Trainer(
            model,
            TrainConfig(stages, SimpleLoss(),
                        torch.optim.SGD(model.parameters(), lr=0.1)),
            fsm).set_epoch_num(3)

        checkpoint_file = os.path.join(self.base_dir, 'checkpoints', 'last',
                                       'last_checkpoint.zip')

        def on_epoch_end():
            self.assertTrue(os.path.exists(checkpoint_file))
            os.remove(checkpoint_file)

        trainer.add_on_epoch_end_callback(on_epoch_end)
        trainer.train()
Exemplo n.º 5
0
    def test_base_ops(self):
        fsm = FileStructManager(base_dir=self.base_dir, is_continue=False)
        model = SimpleModel()

        trainer = Trainer(
            model,
            TrainConfig([], torch.nn.L1Loss(),
                        torch.optim.SGD(model.parameters(), lr=1)), fsm)
        with self.assertRaises(Trainer.TrainerException):
            trainer.train()
    def test_predict(self):
        model = SimpleModel()
        fsm = FileStructManager(base_dir=self.base_dir, is_continue=False)

        metrics_processor = MetricsProcessor()
        stages = [
            TrainStage(
                TestDataProducer([[{
                    'data': torch.rand(1, 3),
                    'target': torch.rand(1)
                } for _ in list(range(20))]]), metrics_processor),
            ValidationStage(
                TestDataProducer([[{
                    'data': torch.rand(1, 3),
                    'target': torch.rand(1)
                } for _ in list(range(20))]]), metrics_processor)
        ]
        Trainer(model, TrainConfig(stages, SimpleLoss(), torch.optim.SGD(model.parameters(), lr=1)), fsm)\
            .set_epoch_num(1).train()

        fsm = FileStructManager(base_dir=self.base_dir, is_continue=True)
        Predictor(model, fsm).predict({'data': torch.rand(1, 3)})
    def test_train_stage(self):
        data_producer = DataProducer([[{
            'data': torch.rand(1, 3),
            'target': torch.rand(1)
        } for _ in list(range(20))]])
        metrics_processor = FakeMetricsProcessor()
        train_stage = TrainStage(
            data_producer, metrics_processor).enable_hard_negative_mining(0.1)

        fsm = FileStructManager(base_dir=self.base_dir, is_continue=False)
        model = SimpleModel()
        Trainer(model, TrainConfig([train_stage], SimpleLoss(), torch.optim.SGD(model.parameters(), lr=1)), fsm) \
            .set_epoch_num(1).train()

        self.assertEqual(metrics_processor.call_num, len(data_producer))
Exemplo n.º 8
0
    def test_savig_best_states(self):
        fsm = FileStructManager(base_dir=self.base_dir, is_continue=False)
        model = SimpleModel()
        metrics_processor = MetricsProcessor()
        stages = [
            TrainStage(
                TestDataProducer([[{
                    'data': torch.rand(1, 3),
                    'target': torch.rand(1)
                } for _ in list(range(20))]]), metrics_processor)
        ]
        trainer = Trainer(
            model,
            TrainConfig(stages, SimpleLoss(),
                        torch.optim.SGD(model.parameters(), lr=0.1)),
            fsm).set_epoch_num(3).enable_best_states_saving(
                lambda: np.mean(stages[0].get_losses()))

        checkpoint_file = os.path.join(self.base_dir, 'checkpoints', 'last',
                                       'last_checkpoint.zip')
        best_checkpoint_file = os.path.join(self.base_dir, 'checkpoints',
                                            'best', 'best_checkpoint.zip')

        class Val:
            def __init__(self):
                self.v = None

        first_val = Val()

        def on_epoch_end(val):
            if val.v is not None and np.mean(stages[0].get_losses()) < val.v:
                self.assertTrue(os.path.exists(best_checkpoint_file))
                os.remove(best_checkpoint_file)
                val.v = np.mean(stages[0].get_losses())
                return

            val.v = np.mean(stages[0].get_losses())

            self.assertTrue(os.path.exists(checkpoint_file))
            self.assertFalse(os.path.exists(best_checkpoint_file))
            os.remove(checkpoint_file)

        trainer.add_on_epoch_end_callback(lambda: on_epoch_end(first_val))
        trainer.train()