Exemplo n.º 1
0
def run_training():
 
# construct the graph
    with tf.Graph().as_default():

# specify the training data file location
        #trainfile = os.path.join(FLAGS.data_dir, TRAIN_FILE)

# read the images and labels
        train_dataset, train_labels, img_size, img_size_labels = nn.inputs_ms(batch_size=FLAGS.batch_size, filename=TRAIN_FILE)
        #images, labels = nn.inputs(batch_size=FLAGS.batch_size,
        #                        num_epochs=FLAGS.num_epochs,
        #                        filename=trainfile)

# run inference on the images
        results = nn.inference_ms(train_dataset, img_size)

# calculate the loss from the results of inference and the labels
        loss = nn.loss_ms(results, train_labels)

# setup the training operations
        train_op = nn.training(loss, FLAGS.learning_rate, FLAGS.decay_steps,
                       FLAGS.decay_rate)

# setup the summary ops to use TensorBoard
        summary_op = tf.merge_all_summaries()

# init to setup the initial values of the weights
        init_op = tf.group(tf.initialize_all_variables(),
                           tf.initialize_local_variables())

# setup a saver for saving checkpoints
        saver = tf.train.Saver()
    
# create the session
        sess = tf.Session()

# specify where to write the log files for import to TensorBoard
        summary_writer = tf.train.SummaryWriter(FLAGS.checkpoint_dir,  
                            sess.graph)

# initialize the graph
        sess.run(init_op)

# setup the coordinato and threadsr.  Used for multiple threads to read data.  
# Not strictly required since we don't have a lot of data but typically 
# using multiple threads to read data improves performance
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

# loop will continue until we run out of input training cases
        try:
            step = 0
            while not coord.should_stop():

# start time and run one training iteration
                start_time = time.time()
                _, loss_value = sess.run([train_op, loss])
                duration = time.time() - start_time

# print some output periodically
                if step % 100 == 0:
                    print('OUTPUT: Step %d: loss = %.3f (%.3f sec)' % (step, 
                                                               loss_value,
                                                               duration))
# output some data to the log files for tensorboard
                    summary_str = sess.run(summary_op)
                    summary_writer.add_summary(summary_str, step)
                    summary_writer.flush()

# less frequently output checkpoint files.  Used for evaluating the model
                if step % 1000 == 0:
                    checkpoint_path = os.path.join(FLAGS.checkpoint_dir, 
                                                     MODEL_FILE)
                    saver.save(sess, checkpoint_path, global_step=step)
                step += 1

# quit after we run out of input files to read
        except tf.errors.OutOfRangeError:
            print('OUTPUT: Done training for %d epochs, %d steps.' % (FLAGS.num_epochs,
                                                              step))
            checkpoint_path = os.path.join(FLAGS.checkpoint_dir, 
                                              'model.ckpt')
            saver.save(sess, checkpoint_path, global_step=step)

        finally:
            coord.request_stop()
    
# shut down the threads gracefully
        coord.join(threads)
        sess.close()
Exemplo n.º 2
0
def run_training():
    # construct the graph
    with tf.Graph().as_default():

        # specify the training data file location
        trainfiles = []

        for fi in TRAIN_FILES:
            trainfiles.append(os.path.join(FLAGS.data_dir, fi))

            # trainfile = os.path.join(FLAGS.data_dir, TRAIN_FILE)

        # read the images and labels
        x, y_ = nn.inputs(batch_size=FLAGS.batch_size,
                          num_epochs=FLAGS.num_epochs,
                          filenames=trainfiles,
                          ifeval=False)
        keep_prob = tf.placeholder(tf.float32)

        z_placeholder = tf.placeholder(tf.float32,
                                       [FLAGS.batch_size, z_dimensions])

        # run inference on the images
        y_conv = nn.inference(x, np.array([65, 65, 65]), keep_prob,
                              FLAGS.batch_size)

        # calculate the loss from the results of inference and the labels
        loss = nn.loss(y_conv, y_)

        # caculate the accuracy
        accuracy = nn.evaluation(y_conv, y_)

        # setup the training operations
        train_op = nn.training(loss, FLAGS.learning_rate, FLAGS.decay_steps,
                               FLAGS.decay_rate)

        # setup the summary ops to use TensorBoard
        summary_op = tf.summary.merge_all()

        # init to setup the initial values of the weights
        #init_op = tf.group(tf.initialize_all_variables(), tf.initialize_local_variables())

        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())

        # create the session
        with tf.Session() as sess:

            sess.run(init_op)
            # setup a saver for saving checkpoints
            saver = tf.train.Saver()
            summary_writer = tf.summary.FileWriter(FLAGS.checkpoint_dir,
                                                   sess.graph)

            # setup the coordinato and threadsr.  Used for multiple threads to read data.
            # Not strictly required since we don't have a lot of data but typically
            # using multiple threads to read data improves performance
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)
            start_training_time = time.time()
            # loop will continue until we run out of input training cases
            try:
                step = 0
                while not coord.should_stop():
                    # start time and run one training iteration
                    start_time = time.time()

                    _, l, acc = sess.run(
                        [train_op, loss, accuracy],
                        feed_dict={keep_prob: 0.5})  # Update the discriminator

                    duration = time.time() - start_time

                    # print some output periodically
                    if step % 20 == 0:
                        print(
                            'OUTPUT: Step %d: loss = %.3f (%.3f sec), accuracy = %.3f'
                            % (step, l, duration, acc))
                        # output some data to the log files for tensorboard
                        summary_str = sess.run(summary_op)
                        summary_writer.add_summary(summary_str, step)
                        summary_writer.flush()

                    # less frequently output checkpoint files.  Used for evaluating the model
                    if step % 500 == 0:
                        checkpoint_path = os.path.join(check_save,
                                                       'model.ckpt')
                        saver.save(sess,
                                   save_path=checkpoint_path,
                                   global_step=step)
                    step += 1

            # quit after we run out of input files to read
            except tf.errors.OutOfRangeError:
                print('OUTPUT: Done training for %d epochs, %d steps.' %
                      (FLAGS.num_epochs, step))
                checkpoint_path = os.path.join(check_save, 'model.ckpt')

                saver.save(sess, checkpoint_path, global_step=step)

            finally:
                coord.request_stop()

            # shut down the threads gracefully
            coord.join(threads)
            sess.close()
            end_training_time = time.time()
Exemplo n.º 3
0
def run_training():
 
# construct the graph
    with tf.Graph().as_default():

# specify the training data file location
        trainfile = os.path.join(FLAGS.data_dir, TRAIN_FILE)

# read the images and labels
        images, labels = nn.inputs(batch_size=FLAGS.batch_size,
                                num_epochs=FLAGS.num_epochs,
                                filename=trainfile)

# run inference on the images
        results = nn.inference(images)

# calculate the loss from the results of inference and the labels
        loss = nn.loss(results, labels)

# setup the training operations
        train_op = nn.training(loss, FLAGS.learning_rate, FLAGS.decay_steps,
                       FLAGS.decay_rate)

# setup the summary ops to use TensorBoard
        summary_op = tf.summary.merge_all()

# init to setup the initial values of the weights
        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())

# setup a saver for saving checkpoints
        saver = tf.train.Saver()
    
# create the session
        sess = tf.Session()

# specify where to write the log files for import to TensorBoard
        summary_writer = tf.summary.FileWriter(FLAGS.checkpoint_dir,  
                            sess.graph)

# initialize the graph
        sess.run(init_op)

# setup the coordinato and threadsr.  Used for multiple threads to read data.  
# Not strictly required since we don't have a lot of data but typically 
# using multiple threads to read data improves performance
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

# loop will continue until we run out of input training cases
        try:
            step = 0
            while not coord.should_stop():

# start time and run one training iteration
                start_time = time.time()
                _, loss_value = sess.run([train_op, loss])
                duration = time.time() - start_time

# print some output periodically
                if step % 100 == 0:
                    print('OUTPUT: Step %d: loss = %.3f (%.3f sec)' % (step, 
                                                               loss_value,
                                                               duration))
# output some data to the log files for tensorboard
                    summary_str = sess.run(summary_op)
                    summary_writer.add_summary(summary_str, step)
                    summary_writer.flush()

# less frequently output checkpoint files.  Used for evaluating the model
                if step % 1000 == 0:
                    checkpoint_path = os.path.join(FLAGS.checkpoint_dir, 
                                                     'model.ckpt')
                    saver.save(sess, checkpoint_path, global_step=step)
                step += 1

# quit after we run out of input files to read
        except tf.errors.OutOfRangeError:
            print('OUTPUT: Done training for %d epochs, %d steps.' % (FLAGS.num_epochs,
                                                              step))
            checkpoint_path = os.path.join(FLAGS.checkpoint_dir, 
                                              'model.ckpt')
            saver.save(sess, checkpoint_path, global_step=step)

        finally:
            coord.request_stop()
    
# shut down the threads gracefully
        coord.join(threads)
        sess.close()