Exemplo n.º 1
0
def test_adam_get_layer_method(learning_rate, beta, eps, weight_decay,
                               amsgrad):
    x = Adam(learning_rate=learning_rate,
             betas=beta,
             eps=eps,
             weight_decay=weight_decay,
             amsgrad=amsgrad)

    details = x.get_optimizer()

    assert isinstance(details, dict) == True

    assert issubclass(details["optimizer"], _Adam) == True

    assert isinstance(details["keyword_arguments"], dict) == True

    assert details["keyword_arguments"]["lr"] == learning_rate

    assert details["keyword_arguments"]["betas"] == beta

    assert details["keyword_arguments"]["eps"] == eps

    assert details["keyword_arguments"]["weight_decay"] == weight_decay

    assert details["keyword_arguments"]["amsgrad"] == amsgrad
Exemplo n.º 2
0
def test_adam_should_throw_value_error(learning_rate, beta, eps, weight_decay,
                                       amsgrad):
    with pytest.raises(ValueError) as ex:
        x = Adam(learning_rate=learning_rate,
                 betas=beta,
                 eps=eps,
                 weight_decay=weight_decay,
                 amsgrad=amsgrad)
Exemplo n.º 3
0
def test_model_set_model_method():
    model = Model()
    model.set_model(pytorch_model)
    model.compile(optimizer=Adam(), loss_function=MSELoss())

    with pytest.raises(ValueError):
        model = Model()
        model.set_model(None)
Exemplo n.º 4
0
def test_model_summary_method():
    model = Model()
    model.set_model(pytorch_model)
    model.compile(optimizer=Adam(), loss_function=MSELoss())

    model.summary()

    with pytest.raises(Exception):
        model = Model()
        model.summary()
Exemplo n.º 5
0
def test_models_compile_method():
    model = Model()
    model.set_model(pytorch_model)
    model.compile(optimizer=Adam(), loss_function=MSELoss())

    with pytest.raises(ValueError):
        model = Model()
        model.set_model(pytorch_model)

        model.compile(optimizer=Adam(),
                      loss_function=MSELoss(),
                      metrics=["test"])

    with pytest.raises(ValueError):
        model = Model()
        model.set_model(pytorch_model)

        model.compile(optimizer=Adam(),
                      loss_function=MSELoss(),
                      metrics="test")
Exemplo n.º 6
0
def test_model_save_for_inference_method():
    model = Model()
    model.set_model(pytorch_model)
    model.compile(optimizer=Adam(), loss_function=MSELoss())

    with pytest.raises(ValueError):
        model.save_for_inference(123)

    with pytest.raises(ValueError):
        model.save_for_inference("")

    model.save_for_inference("ignore/test.npy")
Exemplo n.º 7
0
def test_model_evaluate_method():
    model = Model()
    model.set_model(pytorch_model)
    model.compile(optimizer=Adam(), loss_function=MSELoss())
    TrainLogger("ignore/")
    test_gen = train_generator()

    model.fit(
        train_data=(X_train, y_train),
        validation_data=(X_validation, y_validation),
        epochs=1,
        batch_size=32,
    )

    model.evaluate(test_data=(X_test, y_test))
    model.evaluate(test_data=(X_test, y_test), batch_size=4)

    model.evaluate(test_data=test_gen, batch_size=4, tests_steps=4)

    with pytest.raises(ValueError):
        model.evaluate(test_data=(X_test, y_test), batch_size=400)
Exemplo n.º 8
0
# Generating the data
X_train = np.random.rand(100, 1) * 10
y_train = X_train + 5 *np.random.rand(100, 1)

X_validation = np.random.rand(100, 1) * 10
y_validation = X_validation + 5 * np.random.rand(100, 1)

X_test = np.random.rand(10, 1) * 10
y_test = X_test + 5 * np.random.rand(10, 1)

# Making the model
model = Sequential()
model.add(Dense(n_nodes=1, n_inputs=1))

# Building the model
model.build()

# Compiling the model
model.compile(optimizer=Adam(), loss_function=MSELoss())

# Printing model summary
model.summary()

# Training the model
history = model.fit(train_data=(X_train, y_train), validation_data=(X_validation, y_validation), epochs=300, batch_size=4)

# Predicting some values
evaluated = model.evaluate(test_data=(X_test, y_test), batch_size=4)

print(evaluated)
Exemplo n.º 9
0
# Model
model = Sequential()

model.add(Dense(n_nodes=64, n_inputs=784))
model.add(ReLU())

model.add(Dropout())

model.add(Dense(n_nodes=10))

model.build()

model.compile(optimizer=Adam(learning_rate=0.001,
                             betas=(0.9, 0.999),
                             eps=1e-08,
                             weight_decay=0.0,
                             amsgrad=False),
              loss_function=CrossEntropyLoss(),
              metrics=["accuracy"])

print(model.summary())

# Reading data
train_data = pd.read_csv("./data/mnist_train.csv")
test_data = pd.read_csv("./data/mnist_test.csv")

train_data = train_data.sample(frac=1)
train_data = train_data.values

test_data = test_data.sample(frac=1)
Exemplo n.º 10
0
def test_model_fit_method():
    model = Model()
    model.set_model(pytorch_model)
    model.compile(optimizer=Adam(), loss_function=MSELoss())
    logger = TrainLogger("ignore/")

    model.fit(
        train_data=(X_train, y_train),
        validation_data=(X_validation, y_validation),
        epochs=1,
        batch_size=32,
    )

    model.fit(
        train_data=(X_train, y_train),
        validation_data=(X_validation, y_validation),
        epochs=1,
        batch_size=32,
        callbacks=[logger],
    )

    train_gen = train_generator()
    validation_gen = train_generator()

    model.fit(
        train_data=train_gen,
        validation_data=validation_gen,
        epochs=1,
        batch_size=4,
        steps_per_epoch=5,
        validation_steps=5,
    )

    model.fit(
        train_data=train_gen,
        validation_data=validation_gen,
        epochs=1,
        batch_size=4,
        steps_per_epoch=5,
        validation_steps=5,
        callbacks=[logger],
    )

    with pytest.raises(ValueError):
        model.fit(
            train_data=(X_train, y_train),
            validation_data=(X_validation, y_validation),
            epochs=1,
            batch_size=1024,
        )

    with pytest.raises(ValueError):
        model.fit(
            train_data=(X_train, y_train[:-1]),
            validation_data=(X_validation, y_validation),
            epochs=-20,
            batch_size=1024,
        )

    with pytest.raises(ValueError):
        model.fit(
            train_data=(X_train, y_train[:-1]),
            validation_data=(X_validation, y_validation),
            epochs=1,
            batch_size=-10,
        )

    with pytest.raises(ValueError):
        model.fit(
            train_data=(X_train, y_train[:-1]),
            validation_data=(X_validation, y_validation),
            epochs=1,
            batch_size=32,
            callbacks="test",
        )

    with pytest.raises(ValueError):
        train_gen = train_generator()
        validation_gen = train_generator()

        model.fit(
            train_data=train_gen,
            validation_data=validation_gen,
            epochs=1,
            batch_size=32,
            steps_per_epoch=-123,
            validation_steps=5,
        )

    with pytest.raises(ValueError):
        train_gen = train_generator()
        validation_gen = train_generator()

        model.fit(
            train_data=train_gen,
            validation_data=validation_gen,
            epochs=1,
            batch_size=32,
            steps_per_epoch="test",
            validation_steps=5,
        )

    with pytest.raises(ValueError):
        train_gen = train_generator()
        validation_gen = train_generator()

        model.fit(
            train_data=train_gen,
            validation_data=validation_gen,
            epochs=1,
            batch_size=32,
            steps_per_epoch=5,
            validation_steps=-23,
        )

    with pytest.raises(ValueError):
        train_gen = train_generator()
        validation_gen = train_generator()

        model.fit(
            train_data=train_gen,
            validation_data=validation_gen,
            epochs=1,
            batch_size=32,
            steps_per_epoch=5,
            validation_steps="asd",
        )
Exemplo n.º 11
0
model.add(Conv2D(filters=384, kernel_size=3, stride=1, padding=1))
model.add(ReLU())
model.add(Conv2D(filters=256, kernel_size=3, stride=1, padding=1))
model.add(ReLU())
model.add(MaxPool2D(kernel_size=3, stride=2))
model.add(ReLU())
model.add(Flatten())
model.add(Dense(n_nodes=4096))
model.add(ReLU())
model.add(Dense(n_nodes=4096))
model.add(ReLU())
model.add(Dense(n_nodes=10))
model.add(Softmax())

model.build()
model.compile(optimizer=Adam(), loss_function=CrossEntropyLoss(), metrics=["accuracy"])
print(model.summary())

# Get the training Data
train_set = datasets.MNIST(
    root='./data'
    ,train=True
    ,download=True
    ,transform=transforms.Compose([
        transforms.CenterCrop(224),
        transforms.ToTensor()
    ])
)

# Load the dataset from pytorch's Dataloader function
train_loader  = torch.utils.data.DataLoader(train_set, batch_size=1000)
Exemplo n.º 12
0
import pandas as pd
import numpy as np

# Model
model = Sequential()

model.add(Dense(n_nodes=264, n_inputs=784))
model.add(ReLU())

model.add(Dropout())

model.add(Dense(n_nodes=10))

model.build()

model.compile(optimizer=Adam(),
              loss_function=CrossEntropyLoss(),
              metrics=["accuracy"])

print(model.summary())

# Reading data
train_data = pd.read_csv("./data/mnist_train.csv", header=None)
test_data = pd.read_csv("./data/mnist_test.csv", header=None)

train_data = train_data.sample(frac=1)
train_data = train_data.values

test_data = test_data.sample(frac=1)
test_data = test_data.values
Exemplo n.º 13
0
'''

model = Sequential()
model.add(Dense(n_nodes=1, n_inputs=3))
model.add(ReLU())
model.add(Dense(n_nodes=2))
model.add(ReLU())
model.add(Dense(n_nodes=1))
model.add(ReLU())

# Building the Model
model.build()

# Compiling
model.compile(optimizer=Adam(), loss_function=MSELoss(), metrics=["accuracy"])
print(model.summary())

# Data for XOR

x_train = np.array([[0, 0, 1], [0, 1, 1], [1, 0, 1]])
x_test = np.array([[1, 1, 1]])
y_train = np.array([[0], [1], [1]], dtype=np.float32)
y_test = np.array([[0]], dtype=np.float32)

# Training the model
model.fit(train_data=(x_train, y_train), epochs=20, batch_size=1)

# Prediction
print(model.predict(x_test[0]))