Exemplo n.º 1
0
def test_ppg_findpeaks():

    sampling_rate = 500

    ppg = nk.ppg_simulate(
        duration=30,
        sampling_rate=sampling_rate,
        heart_rate=60,
        frequency_modulation=0.01,
        ibi_randomness=0.1,
        drift=1,
        motion_amplitude=0.5,
        powerline_amplitude=0.1,
        burst_amplitude=1,
        burst_number=5,
        random_state=42,
        show=True,
    )
    ppg_cleaned_elgendi = nk.ppg_clean(ppg,
                                       sampling_rate=sampling_rate,
                                       method="elgendi")

    info_elgendi = nk.ppg_findpeaks(ppg_cleaned_elgendi,
                                    sampling_rate=sampling_rate,
                                    show=True)

    peaks = info_elgendi["PPG_Peaks"]

    assert peaks.size == 29
    assert peaks.sum() == 219763
Exemplo n.º 2
0
def find_feature_points(signal, sampling_rate=50, threshold=0.5):
    """
    寻找峰值以及槽点
    :param signal:          初始数据 已经去噪
    :param sampling_rate:   采样率
    :param threshold:       过近的点可以认为是异常值 给予一个threshold去除异常识别的峰值点
    :return:
    """
    origin_signal = signal.copy()
    peaks = nk.ppg_findpeaks(signal, sampling_rate=sampling_rate)
    # 先找到峰值点
    locmax, props = spsg.find_peaks(signal)
    notches = []
    other_notches = []
    # 两种方法找到的共同峰值点
    all_peaks = np.intersect1d(locmax, peaks["PPG_Peaks"])
    mean_T = np.mean(np.diff(all_peaks))
    # 真正的峰值点
    true_peaks = [all_peaks[0]]
    # 周期
    T = []
    for i in range(len(all_peaks) - 1):
        if all_peaks[i + 1] - all_peaks[i] < threshold * mean_T:
            continue
        true_peaks.append(all_peaks[i + 1])
    for i in range(len(true_peaks) - 1):
        notches.append(true_peaks[i] +
                       np.argmin(origin_signal[true_peaks[i]:true_peaks[i +
                                                                        1]]))
        T.append(true_peaks[i + 1] - true_peaks[i])

    for i in range(len(locmax) - 1):
        other_notches.append(locmax[i] +
                             np.argmin(origin_signal[locmax[i]:locmax[i + 1]]))
    other_peaks = list(set(locmax) - set(true_peaks))
    other_notches = list(set(other_notches) - set(notches))
    other_peaks = [i for i in other_peaks if origin_signal[i] > 0]
    other_notches = [i for i in other_notches if origin_signal[i] > 0]

    return {
        "Peaks": true_peaks,
        "Other Peaks": other_peaks,
        "Other Notches": other_notches,
        "Notches": notches,
        "T": T,
        "Cleaned Pulses": origin_signal
    }
Exemplo n.º 3
0
def neurokit_index(request):
    data = pd.read_csv(
        "/Users/siyuqian/Study/django-docker/712AF22B_Mar11_14-07-59.csv")
    # Generate 15 seconds of PPG signal (recorded at 250 samples / second)
    # ppg = nk.ppg_simulate(duration=15, sampling_rate=250, heart_rate=70)
    ppg = nk.ppg_process(data['PPG'], sampling_rate=50)

    # Clear the noise
    ppg_clean = nk.ppg_clean(ppg)

    # Peaks
    peaks = nk.ppg_findpeaks(ppg_clean, sampling_rate=100)

    # Compute HRV indices
    hrv_indices = nk.hrv(peaks, sampling_rate=100, show=True)
    result = hrv_indices.to_json()
    parsed = json.loads(result)
    context = {'response': json.dumps(parsed)}
    return render(request, 'neurokit/neurokit_index.html', context)