Exemplo n.º 1
0
def test_signal_smooth():

    # TODO: test kernels other than "boxcar"
    signal = np.cos(np.linspace(start=0, stop=20, num=1000))
    smooth1 = nk.signal_smooth(signal, kernel="boxcar", size=100)
    smooth2 = nk.signal_smooth(signal, kernel="boxcar", size=500)
    # assert that the signal's amplitude is attenuated more with wider kernels
    assert np.allclose(np.std(smooth1), 0.6044, atol=0.00001)
    assert np.allclose(np.std(smooth2), 0.1771, atol=0.0001)
Exemplo n.º 2
0
def signals_analysis(signals, is_out=False, is_show=False, out_path="figs"):
    """
    数据的分析 主要是特征参数的获取
    :param signals:     初步处理过的数据
    :param is_out:
    :param is_show:
    :param out_path:
    :return:
    """
    sampling_rate = signals["Sampling Rate"]
    feature_points = signals["Feature Points"]
    cleaned_pulses = feature_points["Cleaned Pulses"]
    peaks = feature_points["Peaks"]

    title = "Time Analysis"
    hrv_time = nk.hrv_time(peaks, sampling_rate, show=is_show)
    if is_out:
        no = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
        out_name = os.path.join("outputs",
                                str(out_path) + "___" + no + title + ".png")
        plt.savefig(out_name, dpi=300)
    if is_show:
        plt.show()

    title = "Frequency Analysis"
    hrv_freq = nk.hrv_frequency(peaks, sampling_rate, show=is_show)
    if is_out:
        no = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
        out_name = os.path.join("outputs",
                                str(out_path) + "___" + no + title + ".png")
        plt.savefig(out_name, dpi=300)
    if is_show:
        plt.show()

    title = "Nonlinear Analysis"
    hrv_nonlinear = nk.hrv_nonlinear(peaks, sampling_rate, show=is_show)
    if is_out:
        no = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
        out_name = os.path.join("outputs",
                                str(out_path) + "___" + no + title + ".png")
        plt.savefig(out_name, dpi=300)
    if is_show:
        plt.show()

    # 傅里叶分析  对应给的文章
    xFFT = np.abs(np.fft.rfft(cleaned_pulses) / len(cleaned_pulses))
    xFFT = xFFT[:600]
    xFreqs = np.linspace(0, sampling_rate // 2, len(cleaned_pulses) // 2 + 1)
    xFreqs = xFreqs[:600]
    # 滤波处理 平滑去噪 只处理前200个信号即可
    # TODO 去噪方法可以调节
    cleaned_xFFT = nk.signal_smooth(xFFT, method="loess")
    # 计算特征值
    # F1值
    cleaned_FFT = cleaned_xFFT.copy()
    locmax, props = spsg.find_peaks(cleaned_xFFT)
    hr_hz_index = np.argmax(cleaned_xFFT)
    f1 = np.argmax(xFFT)
    fmax = np.argmax(cleaned_xFFT[locmax])
    cleaned_xFFT[locmax[fmax]] = np.min(cleaned_xFFT)
    f2s = np.argmax(cleaned_xFFT[locmax])
    if f2s - fmax != 1:
        hr_hz_index = locmax[0] + int(np.sqrt(locmax[1] - locmax[0]))
    # F2值
    f2 = locmax[np.argmax(cleaned_xFFT[locmax])]
    F1 = np.round(xFreqs[f1], 2)
    F2 = np.round(xFreqs[f2], 2)
    # 相位差
    F2_F1 = F2 - F1
    # 心率
    HR_FFT = xFreqs[hr_hz_index] * 60
    print(HR_FFT)

    if is_show:
        plt.plot(xFreqs, cleaned_FFT)
        plt.scatter(xFreqs[f1],
                    cleaned_FFT[f1],
                    color="red",
                    label="F1 = " + str(F1) + "HZ")
        plt.scatter(xFreqs[f2],
                    cleaned_FFT[f2],
                    color="orange",
                    label="F2 = " + str(F2) + "HZ")
        plt.legend(loc="upper right")
        plt.ylabel("Power")
        plt.xlabel("Freq(Hz)")
        title = "FFT analysis"
        plt.title(title)
        if is_out:
            no = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
            out_name = os.path.join(
                "outputs",
                str(out_path) + "___" + no + title + ".png")
            plt.savefig(out_name, dpi=300)
        plt.show()
    hrv_new = {
        "Power": xFFT,
        "Freq": cleaned_FFT,
        "X": xFreqs,
        "F1": F1,
        "F2": F2,
        "F2_F1": F2_F1,
        "HR_FFT": HR_FFT
    }
    return {
        "HRV New": hrv_new,
        "HRV Time": hrv_time,
        "HRV Frequency": hrv_freq,
        "HRV Nonlinear": hrv_nonlinear
    }