Exemplo n.º 1
0
    def __nml2_doc(cls,file_name,optimized=False):
        import sys
        
        import logging
        logging.basicConfig(level=logging.INFO, format="%(name)-19s %(levelname)-5s - %(message)s")
        
        from neuroml.hdf5.NeuroMLHdf5Parser import NeuroMLHdf5Parser
            
        if optimized:
            
            currParser = NeuroMLHdf5Parser(None,optimized=True) 
            
            currParser.parse(file_name)
            
            return currParser.get_nml_doc()
        else:
        
            from neuroml.hdf5.NetworkBuilder import NetworkBuilder

            nmlHandler = NetworkBuilder()   

            currParser = NeuroMLHdf5Parser(nmlHandler) 

            currParser.parse(file_name)

            nml2_doc = nmlHandler.get_nml_doc()
            if currParser.nml_doc_extra_elements:
                add_all_to_document(currParser.nml_doc_extra_elements,nml2_doc)

            return nml2_doc
Exemplo n.º 2
0
def _read_neuroml2(nml2_file_name_or_string, include_includes=False, verbose=False, 
                       already_included=[], print_method=print_, optimized=False, base_path=None):  
    
    #print("................ Loading: %s"%nml2_file_name_or_string[:7])
    
    base_path_to_use = os.path.dirname(os.path.realpath(nml2_file_name_or_string)) if base_path == None else base_path
        
    
    if supressGeneratedsWarnings: warnings.simplefilter("ignore")
    
    if not isinstance(nml2_file_name_or_string, str) or nml2_file_name_or_string.startswith('<'):
        nml2_doc = nmlparsestring(nml2_file_name_or_string)
        base_path_to_use = './' if base_path == None else base_path
    elif nml2_file_name_or_string.endswith('.h5') or nml2_file_name_or_string.endswith('.hdf5'):
        nml2_doc = NeuroMLHdf5Loader.load(nml2_file_name_or_string,optimized=optimized)
    else:
        nml2_doc = NeuroMLLoader.load(nml2_file_name_or_string)
        
    if supressGeneratedsWarnings: warnings.resetwarnings()
    
    if include_includes:
        print_method('Including included files (included already: %s)' \
                      % already_included, verbose)
        
        for include in nml2_doc.include:
            incl_loc = os.path.abspath(os.path.join(base_path_to_use, include.href))
            if incl_loc not in already_included:
                print_method("Loading included NeuroML2 file: %s (base: %s, resolved: %s)" % (include.href, base_path_to_use, incl_loc), 
                              verbose)
                              
                if incl_loc.endswith('.nml') or incl_loc.endswith('.xml'):
                    nml2_sub_doc = read_neuroml2_file(incl_loc, True, 
                        verbose=verbose, already_included=already_included)
                    already_included.append(incl_loc)
                    add_all_to_document(nml2_sub_doc,nml2_doc)
                    
                elif incl_loc.endswith('.nml.h5'):
                    nml2_sub_doc = NeuroMLHdf5Loader.load(incl_loc)
                    already_included.append(incl_loc)
                    add_all_to_document(nml2_sub_doc,nml2_doc)
                    
                else:
                    raise Exception("Unrecognised extension on file: %s"%incl_loc)
                
        nml2_doc.include = []
        
    else:
        if len(nml2_doc.include)>0:
            print_method('NOT including included files, even though %s are included!'%len(nml2_doc.include), verbose)           
                    
                            
        nml2_doc.include = []
            
    return nml2_doc
Exemplo n.º 3
0
    def get_nml_doc(self):

        if not self.optimized:
            nml2_doc = nmlHandler.get_nml_doc()
            if self.nml_doc_extra_elements:
                add_all_to_document(self.nml_doc_extra_elements, nml2_doc)
            return nml2_doc
        else:

            nml_doc = neuroml.NeuroMLDocument(id=self.doc_id,
                                              notes=self.doc_notes)
            if self.nml_doc_extra_elements:
                add_all_to_document(self.nml_doc_extra_elements, nml_doc)
            nml_doc.networks.append(self.optimizedNetwork)

            return nml_doc