Exemplo n.º 1
0
def add_gap_junction_synapse(nml_doc, id, conductance):
    """
    Adds a <gapJunction> element to the document. See the definition of the 
    behaviour of this here: https://www.neuroml.org/NeuroML2CoreTypes/Synapses.html#gapJunction
    
    Returns the class created.
    """

    syn0 = neuroml.GapJunction(id=id, conductance=conductance)

    nml_doc.gap_junctions.append(syn0)

    return syn0
def create_GoC_network(duration, dt, seed, runid, run=False):

    ### ---------- Load Params
    noPar = True
    pfile = Path('params_file.pkl')
    if pfile.exists():
        print('Reading parameters from file:')
        file = open('params_file.pkl', 'rb')
        params_list = pkl.load(file)
        if len(params_list) > runid:
            p = params_list[runid]
            file.close()
    if noPar:
        p = inp.get_simulation_params(runid)

    ### ---------- Component types
    goc_filename = 'GoC.cell.nml'  # Golgi cell with channels
    goc_file = pynml.read_neuroml2_file(goc_filename)
    goc_type = goc_file.cells[0]
    goc_ref = nml.IncludeType(href=goc_filename)

    gj = nml.GapJunction(id="GJ_0", conductance="426pS")  # GoC synapse

    ### --------- Populations

    # Build network to specify cells and connectivity
    net = nml.Network(id="gocNetwork",
                      type="networkWithTemperature",
                      temperature="23 degC")

    # Create GoC population
    goc_pop = nml.Population(id=goc_type.id + "Pop",
                             component=goc_type.id,
                             type="populationList",
                             size=p["nGoC"])
    for goc in range(p["nGoC"]):
        inst = nml.Instance(id=goc)
        goc_pop.instances.append(inst)
        inst.location = nml.Location(x=p["GoC_pos"][goc, 0],
                                     y=p["GoC_pos"][goc, 1],
                                     z=p["GoC_pos"][goc, 2])
    net.populations.append(goc_pop)

    # Create NML document for network specification
    net_doc = nml.NeuroMLDocument(id=net.id)
    net_doc.networks.append(net)
    net_doc.includes.append(goc_ref)
    net_doc.gap_junctions.append(gj)

    ### ------------ Connectivity

    ### 1. Input Current to one cell
    ctr = 0
    for goc in p["Test_GoC"]:
        for jj in range(p["nSteps"]):
            input_id = 'stim_{}'.format(ctr)
            istep = nml.PulseGenerator(
                id=input_id,
                delay='{} ms'.format(p["iDuration"] * jj + p["iRest"] *
                                     (jj + 1)),
                duration='{} ms'.format(p["iDuration"]),
                amplitude='{} pA'.format(p["iAmp"][jj]))
            net_doc.pulse_generators.append(istep)

            input_list = nml.InputList(id='ilist_{}'.format(ctr),
                                       component=istep.id,
                                       populations=goc_pop.id)
            curr_inj = nml.Input('0',
                                 target="../%s[%i]" % (goc_pop.id, goc),
                                 destination="synapses")
            input_list.input.append(curr_inj)
            net.input_lists.append(input_list)
            ctr += 1

    ### 2. Electrical coupling between GoCs

    GoCCoupling = nml.ElectricalProjection(id="gocGJ",
                                           presynaptic_population=goc_pop.id,
                                           postsynaptic_population=goc_pop.id)
    net.electrical_projections.append(GoCCoupling)
    dend_id = [1, 2, 5]
    for jj in range(p["GJ_pairs"].shape[0]):
        conn = nml.ElectricalConnectionInstanceW(
            id=jj,
            pre_cell='../{}/{}/{}'.format(goc_pop.id, p["GJ_pairs"][jj, 0],
                                          goc_type.id),
            pre_segment=dend_id[p["GJ_loc"][jj, 0]],
            pre_fraction_along='0.5',
            post_cell='../{}/{}/{}'.format(goc_pop.id, p["GJ_pairs"][jj, 1],
                                           goc_type.id),
            post_segment=dend_id[p["GJ_loc"][jj, 1]],
            post_fraction_along='0.5',
            synapse=gj.id,
            weight=p["GJ_wt"][jj])
        GoCCoupling.electrical_connection_instance_ws.append(conn)

    ### --------------  Write files

    net_filename = 'gocNetwork.nml'
    pynml.write_neuroml2_file(net_doc, net_filename)

    simid = 'sim_gocnet_' + goc_type.id + '_run_{}'.format(runid)
    ls = LEMSSimulation(simid, duration=duration, dt=dt, simulation_seed=seed)
    ls.assign_simulation_target(net.id)
    ls.include_neuroml2_file(net_filename)
    ls.include_neuroml2_file(goc_filename)

    # Specify outputs
    eof0 = 'Events_file'
    ls.create_event_output_file(eof0, "%s.v.spikes" % simid, format='ID_TIME')
    for jj in range(goc_pop.size):
        ls.add_selection_to_event_output_file(
            eof0, jj, '{}/{}/{}'.format(goc_pop.id, jj, goc_type.id), 'spike')

    of0 = 'Volts_file'
    ls.create_output_file(of0, "%s.v.dat" % simid)
    ctr = 0
    for jj in p["Test_GoC"]:
        ls.add_column_to_output_file(
            of0, jj, '{}/{}/{}/v'.format(goc_pop.id, ctr, goc_type.id))
        ctr += 1

    #Create Lems file to run
    lems_simfile = ls.save_to_file()

    if run:
        res = pynml.run_lems_with_jneuroml_neuron(lems_simfile,
                                                  max_memory="2G",
                                                  nogui=True,
                                                  plot=False)
    else:
        res = pynml.run_lems_with_jneuroml_neuron(lems_simfile,
                                                  max_memory="2G",
                                                  only_generate_scripts=True,
                                                  compile_mods=False,
                                                  nogui=True,
                                                  plot=False)

    return res
Exemplo n.º 3
0
def create_GoC_network( duration, dt, seed, runid, run=False):

	### ---------- Load Params
	noPar = True
	pfile = Path('params_file.pkl')
	if pfile.exists():
		print('Reading parameters from file:')
		file = open('params_file.pkl','rb')
		params_list = pkl.load(file)
		if len(params_list)>runid:
			p = params_list[runid]
			file.close()
	if noPar:
		p = inp.get_simulation_params( runid )
    
	### ---------- Component types
	goc_filename = 'GoC.cell.nml'							# Golgi cell with channels
	goc_file = pynml.read_neuroml2_file( goc_filename )
	goc_type = goc_file.cells[0]
	goc_ref = nml.IncludeType( href=goc_filename )

	MFSyn_filename = 'MF_GoC_Syn.nml'						# small conductance synapse for background inputs
	mfsyn_file = pynml.read_neuroml2_file( MFSyn_filename )
	MFSyn_type = mfsyn_file.exp_three_synapses[0]
	mfsyn_ref = nml.IncludeType( href=MFSyn_filename )
	
	MF20Syn_filename = 'MF_GoC_SynMult.nml'					# multi-syn conductance for strong/coincident transient input
	mf20syn_file = pynml.read_neuroml2_file( MF20Syn_filename )
	MF20Syn_type = mf20syn_file.exp_three_synapses[0]
	mf20syn_ref = nml.IncludeType( href=MF20Syn_filename )

	mf_type2 = 'spikeGeneratorPoisson'						# Spike source for background inputs
	mf_poisson = nml.SpikeGeneratorPoisson( id = "MF_Poisson", average_rate="5 Hz" )	# Not tuned to any data - qqq !
	
	mf_bursttype = 'transientPoissonFiringSynapse'			# Burst of MF input (as explicit input)
	mf_burst = nml.TransientPoissonFiringSynapse( id="MF_Burst", average_rate="100 Hz", delay="2000 ms", duration="500 ms", synapse=MF20Syn_type.id, spike_target='./{}'.format(MF20Syn_type.id) )

	gj = nml.GapJunction( id="GJ_0", conductance="426pS" )	# GoC synapse
	
	### --------- Populations

	# Build network to specify cells and connectivity
	net = nml.Network( id="gocNetwork", type="networkWithTemperature" , temperature="23 degC" )
		
	# Create GoC population
	goc_pop = nml.Population( id=goc_type.id+"Pop", component = goc_type.id, type="populationList", size=p["nGoC"] )
	for goc in range( p["nGoC"] ):
		inst = nml.Instance( id=goc )
		goc_pop.instances.append( inst )
		inst.location = nml.Location( x=p["GoC_pos"][goc,0], y=p["GoC_pos"][goc,1], z=p["GoC_pos"][goc,2] )
	net.populations.append( goc_pop )


	### MF population
	MF_Poisson_pop = nml.Population(id=mf_poisson.id+"_pop", component=mf_poisson.id, type="populationList", size=p["nMF"])
	for mf in range( p["nMF"] ):
		inst = nml.Instance(id=mf)
		MF_Poisson_pop.instances.append( inst )
		inst.location = nml.Location( x=p["MF_pos"][mf,0], y=p["MF_pos"][mf,1], z=p["MF_pos"][mf,2] )		
	net.populations.append( MF_Poisson_pop )
	
	# Create NML document for network specification
	net_doc = nml.NeuroMLDocument( id=net.id )
	net_doc.networks.append( net )
	net_doc.includes.append( goc_ref )
	net_doc.includes.append( mfsyn_ref )
	net_doc.includes.append( mf20syn_ref )
	net_doc.spike_generator_poissons.append( mf_poisson )	
	net_doc.transient_poisson_firing_synapses.append( mf_burst )
	net_doc.gap_junctions.append(gj)
	
	
	### ------------ Connectivity

	### 1. Background excitatory inputs: 	MF to GoC populations
	MFProjection = nml.Projection(id="MFtoGoC", presynaptic_population=MF_Poisson_pop.id, postsynaptic_population=goc_pop.id, synapse=MFSyn_type.id)
	net.projections.append(MFProjection)

	# MF_> GoC synapses (with syn_count equivalent to integer scaling of Mf synapse strength)
	nMFSyn = p["MF_GoC_pairs"].shape[1]
	ctr=0
	for syn in range( nMFSyn ):
		mf, goc = p["MF_GoC_pairs"][:, syn]
		for syn_count in range(p["MF_GoC_wt"][ctr]):
			conn2 = nml.Connection(id=ctr, pre_cell_id='../{}/{}/{}'.format(MF_Poisson_pop.id, mf, mf_poisson.id), post_cell_id='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id), post_segment_id='0', post_fraction_along="0.5")	#on soma
			MFProjection.connections.append(conn2)
			ctr+=1

	### 2. Perturbation as High Freq MF Inputs
	ctr=0
	for goc in p["Burst_GoC"]:
		for jj in range( p["nBurst"] ):				# Each Perturbed GoC gets nBurst random Burst sources
			inst = nml.ExplicitInput( id=ctr, target='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id), input=mf_burst.id, synapse=MF20Syn_type.id, spikeTarget='./{}'.format(MF20Syn_type.id))
			net.explicit_inputs.append( inst )
			ctr += 1

	### 3. Electrical coupling between GoCs
		
	GoCCoupling = nml.ElectricalProjection( id="gocGJ", presynaptic_population=goc_pop.id, postsynaptic_population=goc_pop.id )
	net.electrical_projections.append( GoCCoupling )
	dend_id = [1,2,5]
	for jj in range( p["GJ_pairs"].shape[0] ):
		conn = nml.ElectricalConnectionInstanceW( id=jj, pre_cell='../{}/{}/{}'.format(goc_pop.id, p["GJ_pairs"][jj,0], goc_type.id), pre_segment=dend_id[p["GJ_loc"][jj,0]], pre_fraction_along='0.5', post_cell='../{}/{}/{}'.format(goc_pop.id, p["GJ_pairs"][jj,1], goc_type.id), post_segment=dend_id[p["GJ_loc"][jj,1]], post_fraction_along='0.5', synapse=gj.id, weight=p["GJ_wt"][jj] )
		GoCCoupling.electrical_connection_instance_ws.append( conn )
		
		
	### --------------  Write files
		
	net_filename = 'gocNetwork.nml'
	pynml.write_neuroml2_file( net_doc, net_filename )

	simid = 'sim_gocnet_'+goc_type.id+'_run_{}'.format(runid)
	ls = LEMSSimulation( simid, duration=duration, dt=dt, simulation_seed=seed )
	ls.assign_simulation_target( net.id )
	ls.include_neuroml2_file( net_filename)
	ls.include_neuroml2_file( goc_filename)
	ls.include_neuroml2_file( MFSyn_filename)
	ls.include_neuroml2_file( MF20Syn_filename)
	
	
	# Specify outputs
	eof0 = 'Events_file'
	ls.create_event_output_file(eof0, "%s.v.spikes"%simid,format='ID_TIME')
	for jj in range( goc_pop.size):
		ls.add_selection_to_event_output_file( eof0, jj, '{}/{}/{}'.format( goc_pop.id, jj, goc_type.id), 'spike' )
		
	of0 = 'Volts_file'
	ls.create_output_file(of0, "%s.v.dat"%simid)
	for jj in range( goc_pop.size ):
		ls.add_column_to_output_file(of0, jj, '{}/{}/{}/v'.format( goc_pop.id, jj, goc_type.id))
		
	#Create Lems file to run
	lems_simfile = ls.save_to_file()

	if run:
		res = pynml.run_lems_with_jneuroml_neuron( lems_simfile, max_memory="2G", nogui=True, plot=False)
	else:
		res = pynml.run_lems_with_jneuroml_neuron( lems_simfile, max_memory="2G", only_generate_scripts = True, compile_mods = False, nogui=True, plot=False)
	
	
	return res
Exemplo n.º 4
0
def create_GoC_network(duration,
                       dt,
                       seed,
                       N_goc=0,
                       N_mf=15,
                       run=False,
                       prob_type='Boltzmann',
                       GJw_type='Vervaeke2010'):

    ### ---------- Component types
    goc_filename = 'GoC.cell.nml'  # Golgi cell with channels
    goc_file = pynml.read_neuroml2_file(goc_filename)
    goc_type = goc_file.cells[0]
    goc_ref = nml.IncludeType(href=goc_filename)

    MFSyn_filename = 'MF_GoC_Syn.nml'  # small conductance synapse for background inputs
    mfsyn_file = pynml.read_neuroml2_file(MFSyn_filename)
    MFSyn_type = mfsyn_file.exp_three_synapses[0]
    mfsyn_ref = nml.IncludeType(href=MFSyn_filename)

    MF20Syn_filename = 'MF_GoC_SynMult.nml'  # multi-syn conductance for strong/coincident transient input
    mf20syn_file = pynml.read_neuroml2_file(MF20Syn_filename)
    MF20Syn_type = mf20syn_file.exp_three_synapses[0]
    mf20syn_ref = nml.IncludeType(href=MF20Syn_filename)

    mf_type2 = 'spikeGeneratorPoisson'  # Spike source for background inputs
    mf_poisson = nml.SpikeGeneratorPoisson(
        id="MF_Poisson", average_rate="5 Hz")  # Not tuned to any data - qqq !

    mf_bursttype = 'transientPoissonFiringSynapse'  # Burst of MF input (as explicit input)
    mf_burst = nml.TransientPoissonFiringSynapse(id="MF_Burst",
                                                 average_rate="100 Hz",
                                                 delay="2000 ms",
                                                 duration="500 ms",
                                                 synapse=MF20Syn_type.id,
                                                 spike_target='./{}'.format(
                                                     MF20Syn_type.id))

    gj = nml.GapJunction(id="GJ_0", conductance="426pS")  # GoC synapse

    ### --------- Populations

    # Build network to specify cells and connectivity
    net = nml.Network(id="gocNetwork",
                      type="networkWithTemperature",
                      temperature="23 degC")

    ### Golgi cells
    if N_goc > 0:
        GoC_pos = nu.GoC_locate(N_goc)
    else:
        GoC_pos = nu.GoC_density_locate()
        N_goc = GoC_pos.shape[0]

    # Create GoC population
    goc_pop = nml.Population(id=goc_type.id + "Pop",
                             component=goc_type.id,
                             type="populationList",
                             size=N_goc)
    for goc in range(N_goc):
        inst = nml.Instance(id=goc)
        goc_pop.instances.append(inst)
        inst.location = nml.Location(x=GoC_pos[goc, 0],
                                     y=GoC_pos[goc, 1],
                                     z=GoC_pos[goc, 2])
    net.populations.append(goc_pop)

    ### MF population
    MF_Poisson_pop = nml.Population(id=mf_poisson.id + "_pop",
                                    component=mf_poisson.id,
                                    type="populationList",
                                    size=N_mf)
    MF_pos = nu.GoC_locate(N_mf)
    for mf in range(N_mf):
        inst = nml.Instance(id=mf)
        MF_Poisson_pop.instances.append(inst)
        inst.location = nml.Location(x=MF_pos[mf, 0],
                                     y=MF_pos[mf, 1],
                                     z=MF_pos[mf, 2])
    net.populations.append(MF_Poisson_pop)

    # Create NML document for network specification
    net_doc = nml.NeuroMLDocument(id=net.id)
    net_doc.networks.append(net)
    net_doc.includes.append(goc_ref)
    net_doc.includes.append(mfsyn_ref)
    net_doc.includes.append(mf20syn_ref)
    net_doc.spike_generator_poissons.append(mf_poisson)
    net_doc.transient_poisson_firing_synapses.append(mf_burst)
    net_doc.gap_junctions.append(gj)

    ### ------------ Connectivity

    ### background excitatory inputs: 	MF to GoC populations
    MFProjection = nml.Projection(id="MFtoGoC",
                                  presynaptic_population=MF_Poisson_pop.id,
                                  postsynaptic_population=goc_pop.id,
                                  synapse=MFSyn_type.id)
    net.projections.append(MFProjection)

    #Get list of MF->GoC synapse
    mf_synlist = nu.randdist_MF_syn(N_mf, N_goc,
                                    pConn=0.3)  # Not tuned to any data - qqq!
    nMFSyn = mf_synlist.shape[1]
    for syn in range(nMFSyn):
        mf, goc = mf_synlist[:, syn]
        conn2 = nml.Connection(
            id=syn,
            pre_cell_id='../{}/{}/{}'.format(MF_Poisson_pop.id, mf,
                                             mf_poisson.id),
            post_cell_id='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id),
            post_segment_id='0',
            post_fraction_along="0.5")  #on soma
        MFProjection.connections.append(conn2)

    ### Add few burst inputs
    n_bursts = 4
    gocPerm = np.random.permutation(
        N_goc)  # change to central neurons later -qqq !!!
    ctr = 0
    for gg in range(4):
        goc = gocPerm[gg]
        for jj in range(n_bursts):
            inst = nml.ExplicitInput(
                id=ctr,
                target='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id),
                input=mf_burst.id,
                synapse=MF20Syn_type.id,
                spikeTarget='./{}'.format(MF20Syn_type.id))
            net.explicit_inputs.append(inst)
            ctr += 1

    ### Electrical coupling between GoCs

    # get GJ connectivity
    GJ_pairs, GJWt = nu.GJ_conn(GoC_pos, prob_type, GJw_type)
    #tmp1, tmp2 = valnet.gapJuncAnalysis( GJ_pairs, GJWt )
    #print("Number of gap junctions per cell: ", tmp1)
    #print("Net GJ conductance per cell:", tmp2)

    # Add electrical synapses
    GoCCoupling = nml.ElectricalProjection(id="gocGJ",
                                           presynaptic_population=goc_pop.id,
                                           postsynaptic_population=goc_pop.id)
    nGJ = GJ_pairs.shape[0]
    for jj in range(nGJ):
        conn = nml.ElectricalConnectionInstanceW(
            id=jj,
            pre_cell='../{}/{}/{}'.format(goc_pop.id, GJ_pairs[jj, 0],
                                          goc_type.id),
            pre_segment='1',
            pre_fraction_along='0.5',
            post_cell='../{}/{}/{}'.format(goc_pop.id, GJ_pairs[jj, 1],
                                           goc_type.id),
            post_segment='1',
            post_fraction_along='0.5',
            synapse=gj.id,
            weight=GJWt[jj])
        GoCCoupling.electrical_connection_instance_ws.append(conn)
    net.electrical_projections.append(GoCCoupling)

    ### --------------  Write files

    net_filename = 'gocNetwork.nml'
    pynml.write_neuroml2_file(net_doc, net_filename)
    #lems_filename = 'instances.xml'
    #pynml.write_lems_file( lems_inst_doc, lems_filename, validate=False )

    simid = 'sim_gocnet' + goc_type.id
    ls = LEMSSimulation(simid, duration=duration, dt=dt, simulation_seed=seed)
    ls.assign_simulation_target(net.id)

    ls.include_neuroml2_file(net_filename)
    ls.include_neuroml2_file(goc_filename)
    ls.include_neuroml2_file(MFSyn_filename)
    ls.include_neuroml2_file(MF20Syn_filename)
    #ls.include_lems_file( lems_filename, include_included=False)

    # Specify outputs
    eof0 = 'Events_file'
    ls.create_event_output_file(eof0, "%s.v.spikes" % simid, format='ID_TIME')
    for jj in range(goc_pop.size):
        ls.add_selection_to_event_output_file(
            eof0, jj, '{}/{}/{}'.format(goc_pop.id, jj, goc_type.id), 'spike')

    of0 = 'Volts_file'
    ls.create_output_file(of0, "%s.v.dat" % simid)
    for jj in range(goc_pop.size):
        ls.add_column_to_output_file(
            of0, jj, '{}/{}/{}/v'.format(goc_pop.id, jj, goc_type.id))

    #Create Lems file to run
    lems_simfile = ls.save_to_file()

    if run:
        res = pynml.run_lems_with_jneuroml_neuron(lems_simfile,
                                                  max_memory="2G",
                                                  nogui=True,
                                                  plot=False)
    else:
        res = pynml.run_lems_with_jneuroml_neuron(lems_simfile,
                                                  max_memory="2G",
                                                  only_generate_scripts=True,
                                                  compile_mods=False,
                                                  nogui=True,
                                                  plot=False)

    return res
def Vervaeke_2010_model(pair_id,projection_id,prePop,prePop_listIndex,prePopSize,preCellType,preNML2Type,pre_cell_positions,\
                                               postPop,postPop_listIndex,postPopSize,postCellType,postNML2Type,post_cell_positions,\
                                               connectivity_parameters,seed_number,parentDir=None):

    random.seed(seed_number)

    if parentDir != None:
       preCellTypeFile=parentDir+"/NeuroML2"+"/"+preCellType
       postCellTypeFile=parentDir+"/NeuroML2"+"/"+postCellType
    else:
       preCellTypeFile=preCellType
       postCellTypeFile=postCellType
    
    nonempty_projection=False
    gapJ_object_array=[]
    gap_counter=0
    #######
    if 'prePoptargetGroup' in connectivity_parameters:
       pre_pop_target_segment_array=extract_morphology_information([preCellTypeFile],{preCellTypeFile:preNML2Type},\
                                                                                          ["segment groups",  \
connectivity_parameters['prePoptargetGroup']['segmentGroupList']])

    if 'postPoptargetGroup' in connectivity_parameters:
       post_pop_target_segment_array=extract_morphology_information([postCellTypeFile],{postCellTypeFile:postNML2Type},\
                                  ["segment groups",connectivity_parameters['postPoptargetGroup']['segmentGroupList'] ] )

                                            
    proj = neuroml.ElectricalProjection(id="proj%d"%projection_id,presynaptic_population=prePop,postsynaptic_population=postPop)
    
    conn_count = 0
                                                                              
    conductance_scaling=1
                                                        
    conductance_array=[]
    conductance_array_spatial_scale1=[]
    make_conductance_array_no_spatial_scale=False

              
    if 'testingConductanceScale' in connectivity_parameters:
       conductance_scaling=connectivity_parameters['testingConductanceScale']
 

    spatial_scale=1

    if 'spatialScale' in connectivity_parameters:
       spatial_scale=connectivity_parameters['spatialScale']

    if connectivity_parameters['normalizeConductances']:
                                                        
       if spatial_scale != 1:
                     
          make_conductance_array_no_spatial_scale=True
    
    one_population=False
    if prePop==postPop:
       one_population=True
                          
    for Pre_cell in range(0,prePopSize):
        if one_population:
           post_index_array=range(0,postPopSize)
           post_index_array.remove(Pre_cell)
        else:
           post_index_array=range(0,postPopSize)
        for Post_cell in post_index_array:
            if Pre_cell <= Post_cell:                                     
               distance_between_cells=distance(pre_cell_positions[Pre_cell],post_cell_positions[Post_cell])/spatial_scale

               if connectivity_parameters['normalizeConductances']:
                                                        
                  if make_conductance_array_no_spatial_scale:
                     distance_between_cells_spatial_scale1=spatial_scale*distance_between_cells
                             
                                                        
               if random.random() <connection_probability_vervaeke_2010(distance_between_cells):
                  nonempty_projection=True
                  conductanceValue=synaptic_weight_vervaeke_2010(distance_between_cells)
                  conductance_array.append(conductanceValue)
                                                         
                  if make_conductance_array_no_spatial_scale:
                     conductanceValueN=synaptic_weight_vervaeke_2010(distance_between_cells_spatial_scale1)
                     conductance_array_spatial_scale1.append(conductanceValueN)
                                                        
                  if 'prePoptargetGroup' in connectivity_parameters:
                     pre_target_points=get_unique_target_points(pre_pop_target_segment_array,"segment groups and segments",\
                             [connectivity_parameters['prePoptargetGroup' ]['segmentGroupList'],\
connectivity_parameters['prePoptargetGroup']['segmentGroupProbabilities']],1)

       
                  if 'postPoptargetGroup' in connectivity_parameters:

                      post_targeting_mode="segment groups and segments"

                      post_targeting_parameters=[connectivity_parameters['postPoptargetGroup']['segmentGroupList'],\
connectivity_parameters['postPoptargetGroup']['segmentGroupProbabilities']]

                          
                  if 'maximalConnDistance' in connectivity_parameters:
                     x=0
                     while x==0:
                         post_target_point=get_unique_target_points(post_pop_target_segment_array,post_targeting_mode,post_targeting_parameters,1) 
                         if get_3D_connection_length(preCellTypeFile,postCellTypeFile,preNML2Type,postNML2Type,pre_cell_positions,post_cell_positions,Pre_cell,\
                            Post_cell,pre_target_points[0,0],post_target_point[0,0],\
                            pre_target_points[0,1],post_target_point[0,1]) <=connectivity_parameters['maximalConnDistance']:
                            x=1
                  else:
                     post_target_point=get_unique_target_points(post_pop_target_segment_array,post_targeting_mode,\
                                                                             post_targeting_parameters,1)

                  Pre_segment_id=pre_target_points[0,0]
                  Post_segment_id=post_target_point[0,0]
                  Pre_fraction=pre_target_points[0,1]
                  Post_fraction=post_target_point[0,1]

                          
                  conn =neuroml.ElectricalConnectionInstance(id=conn_count,\
pre_cell="../%s/%d/%s"%(prePop,Pre_cell,preCellType),\
post_cell="../%s/%d/%s"%(postPop,Post_cell,postCellType),synapse="gap_junction%d%d"%(pair_id,gap_counter),\
                                                             pre_segment="%d"%Pre_segment_id,post_segment="%d"%Post_segment_id,\
                                                             pre_fraction_along="%f"%Pre_fraction,post_fraction_along="%f"%Post_fraction)
                  gap_counter+=1                         
	          

                  proj.electrical_connection_instances.append(conn)
	          conn_count+=1
    ########
    conductanceUnits=connectivity_parameters['units']
    if len(conductance_array)==gap_counter:
       for GJ in range(0,len(conductance_array)):
           if make_conductance_array_no_spatial_scale:
              conductanceValue=conductance_array[GJ]*(sum(conductance_array_spatial_scale1)/sum(conductance_array))
              gap_junction = neuroml.GapJunction(id="gap_junction%d%d"%(pair_id,GJ), conductance="%f%s"%(conductanceValue*conductance_scaling,conductanceUnits) )
              gapJ_object_array.append(gap_junction) 
           else:
              conductanceValue=conductance_array[GJ]
              gap_junction = neuroml.GapJunction(id="gap_junction%d%d"%(pair_id,GJ), conductance="%f%s"%(conductanceValue*conductance_scaling,conductanceUnits) )
              gapJ_object_array.append(gap_junction) 
                           


    return proj, nonempty_projection,gapJ_object_array
def Vervaeke_2012_AND_explicit_conn_prob_model(pair_id,projection_id,prePop,prePop_listIndex,prePopSize,preCellType,preNML2Type,pre_cell_positions,\
                                               postPop,postPop_listIndex,postPopSize,postCellType,postNML2Type,post_cell_positions,\
                                               connectivity_parameters,seed_number,parentDir=None):
    random.seed(seed_number)
    nonempty_projection=False
    gapJ_object_array=[]
    gap_counter=0
    #######
    if parentDir != None:
       preCellTypeFile=parentDir+"/NeuroML2"+"/"+preCellType
       postCellTypeFile=parentDir+"/NeuroML2"+"/"+postCellType
    else:
       preCellTypeFile=preCellType
       postCellTypeFile=postCellType
       
    if connectivity_parameters['targetingModelprePop']['model']=="segment groups and segments":
       pre_pop_target_segment_array=extract_morphology_information([preCellTypeFile],{preCellTypeFile:preNML2Type},\
                                                                                          ["segment groups",  \
                          connectivity_parameters['targetingModelprePop']['segmentGroupList']])

    if connectivity_parameters['targetingModelprePop']['model']=="segments and subsegments":
       pre_pop_target_segment_array=extract_morphology_information([preCellTypeFile],{preCellTypeFile:preNML2Type}, \
                                                  ["segments",connectivity_parameters['targetingModelprePop']['segmentList']])

    if connectivity_parameters['targetingModelpostPop']['model']=="segment groups and segments":
       post_pop_target_segment_array=extract_morphology_information([postCellTypeFile],{postCellTypeFile:postNML2Type},\
                                  ["segment groups",connectivity_parameters['targetingModelpostPop']['segmentGroupList'] ] )

    if connectivity_parameters['targetingModelpostPop']['model']=="segments and subsegments":
       post_pop_target_segment_array=extract_morphology_information([postCellTypeFile],{postCellTypeFile:postNML2Type}, \
            ["segments",connectivity_parameters['targetingModelpostPop']['segmentGroupList']])  
                                            
    proj = neuroml.ElectricalProjection(id="proj%d"%projection_id,presynaptic_population=prePop,postsynaptic_population=postPop)
    
    
    conn_count = 0
    
    variable_No_of_GJs=False                                                                        
    if connectivity_parameters['gapJunctionModel']=="constant number of GJ contacts per pair":
       no_of_GJcon_per_pair=connectivity_parameters['numberGJ']
    if connectivity_parameters['gapJunctionModel']=="variable number of GJ contacts per pair":
       variable_No_of_GJs=True
       if connectivity_parameters['distributionGJ']=="binomial":
          maxGJs=connectivity_parameters['maxNoGJs']
          averageGJs=connectivity_parameters['averageNoGJs']
          averageGJs=float(averageGJs)
          probGJs=averageGJs/maxGJs
       #### other models can be added in the future

    conductance_scaling=1

    if 'testingConductanceScale' in connectivity_parameters:
       conductance_scaling=connectivity_parameters['testingConductanceScale']
 
    if connectivity_parameters['conductanceModel']=="constant":
       conductance_value=connectivity_parameters['conductanceValue']
       conductance_units=connectivity_parameters['units']
       gap_junction = neuroml.GapJunction(id="gap_junction%d%d"%(pair_id,gap_counter),conductance="%f%s"%(conductance_value*conductance_scaling,conductance_units)) 
       gap_id_per_pair="gap_junction%d"%gap_counter        
       gapJ_object_array.append(gap_junction)
       gap_counter+=1


    spatial_scale=1
    if 'spatialScale' in connectivity_parameters:
       spatial_scale=connectivity_parameters['spatialScale']

    one_population=False
    if prePop==postPop:
       one_population=True
                                    
    for Pre_cell in range(0,prePopSize):
        if one_population:
           post_index_array=range(0,postPopSize)
           post_index_array.remove(Pre_cell)
        else:
           post_index_array=range(0,postPopSize)
        for Post_cell in post_index_array:        
            if Pre_cell <= Post_cell:
               if connectivity_parameters['electricalConnModel']=="explicit_connection_probabilities":
                  connection_probability=connectivity_parameters['connProbability']
                          
               if connectivity_parameters['electricalConnModel']=="Vervaeke_2012_based":
                  distance_between_cells=distance(pre_cell_positions[Pre_cell],post_cell_positions[Post_cell])/spatial_scale
                  connection_probability=connection_probability_vervaeke_2010(distance_between_cells)
                          
               if random.random() < connection_probability:
                  nonempty_projection=True

                  if variable_No_of_GJs: 
                     if connectivity_parameters['distributionGJ']=="binomial":
                        no_of_GJcon_per_pair=np.random.binomial(maxGJs,probGJs)

                  if connectivity_parameters['targetingModelprePop']['model']=="segment groups and segments":
                     pre_target_points=get_unique_target_points(pre_pop_target_segment_array,"segment groups and segments",\
                             [connectivity_parameters['targetingModelprePop']['segmentGroupList'],\
connectivity_parameters['targetingModelprePop']['segmentGroupProbabilities']],no_of_GJcon_per_pair)

                  if connectivity_parameters['targetingModelprePop']['model']=="segments and subsegments":
                     pre_target_points=get_unique_target_points(pre_pop_target_segment_array,"segments and subsegments",\
 [connectivity_parameters['targetingModelprePop']['segmentList'],\
 connectivity_parameters['targetingModelprePop']['segmentProbabilities'],\
 connectivity_parameters['targetingModelprePop']['fractionAlongANDsubsegProbabilities']],no_of_GJcon_per_pair)
       
                  if connectivity_parameters['targetingModelpostPop']['model']=="segment groups and segments":

                     post_targeting_mode="segment groups and segments"

                     post_targeting_parameters=[connectivity_parameters['targetingModelpostPop']['segmentGroupList'],\
                       connectivity_parameters['targetingModelpostPop']['segmentGroupProbabilities']]

                  if connectivity_parameters['targetingModelpostPop']['model']=="segments and subsegments":

                     post_targeting_mode="segments and subsegments"

                     post_targeting_parameters=[connectivity_parameters['targetingModelpostPop']['segmentList'],\
 connectivity_parameters['targetingModelpostPop']['segmentProbabilities'],connectivity_parameters['targetingModelpostPop']['fractionAlongANDsubsegProbabilities']]

                  for pre_target_point in range(0,len(pre_target_points)):
                      if 'maximalConnDistance' in connectivity_parameters:
                         x=0
                         while x==0:
                             post_target_point=get_unique_target_points(post_pop_target_segment_array,post_targeting_mode,post_targeting_parameters,1) 

                             if get_3D_connection_length(preCellTypeFile,postCellTypeFile,preNML2Type,postNML2Type,pre_cell_positions,post_cell_positions,Pre_cell,\
                                Post_cell,pre_target_points[pre_target_point,0],post_target_point[0,0],\
                                pre_target_points[pre_target_point,1],post_target_point[0,1]) <=connectivity_parameters['maximalConnDistance']:
                                x=1
                      else:
                         post_target_point=get_unique_target_points(post_pop_target_segment_array,post_targeting_mode,\
                                                                             post_targeting_parameters,1)

                      Pre_segment_id=pre_target_points[pre_target_point,0]
                      Post_segment_id=post_target_point[0,0]
                      Pre_fraction=pre_target_points[pre_target_point,1]
                      Post_fraction=post_target_point[0,1]

                      if connectivity_parameters['conductanceModel']=="variable":
                         if string.lower(connectivity_parameters['distribution'])=="gaussian":
                            conductance=random.gauss(connectivity_parameters['averageConductance'],connectivity_parameters['stdDev'])
                            conductanceUnits=connectivity_parameters['units']
                            gap_junction = neuroml.GapJunction(id="gap_junction%d%d"%(pair_id,gap_counter), conductance="%f%s"%(conductance*conductance_scaling,conductanceUnits) )
                            gapJ_object_array.append(gap_junction)        
		            gap_counter+=1
                         #other options can be added such as gamma distribution
                      
                      conn =neuroml.ElectricalConnectionInstance(id=conn_count,\
pre_cell="../%s/%d/%s"%(prePop,Pre_cell,preCellType),\
post_cell="../%s/%d/%s"%(postPop,Post_cell,postCellType),synapse=gap_junction.id,\
                                                             pre_segment="%d"%Pre_segment_id,post_segment="%d"%Post_segment_id,\
                                                             pre_fraction_along="%f"%Pre_fraction,post_fraction_along="%f"%Post_fraction)
                                            
		      
                      proj.electrical_connection_instances.append(conn)
		      conn_count+=1

    

    return proj, nonempty_projection,gapJ_object_array
Exemplo n.º 7
0
def create_GoC_network( duration, dt, seed, N_goc=0, run=False, prob_type='Boltzmann', GJw_type='Vervaeke2010' ):


	goc_filename = 'GoC.cell.nml'
	goc_file = pynml.read_neuroml2_file( goc_filename )
	goc_type = goc_file.cells[0]
	
	GJ_filename = 'GapJuncCML.nml'
	GJ_file = pynml.read_neuroml2_file( GJ_filename )
	GJ_type = GJ_file.gap_junctions[0]

	MFSyn_filename = 'MF_GoC_Syn.nml'
	mfsyn_file = pynml.read_neuroml2_file( MFSyn_filename )
	MFSyn_type = mfsyn_file.exp_three_synapses[0]
	
	MF20Syn_filename = 'MF_GoC_SynMult.nml'
	mf20syn_file = pynml.read_neuroml2_file( MF20Syn_filename )
	MF20Syn_type = mf20syn_file.exp_three_synapses[0]
	
	# Distribute cells in 3D
	if N_goc>0:
		GoC_pos = nu.GoC_locate(N_goc)
	else:
		GoC_pos = nu.GoC_density_locate()
		N_goc = GoC_pos.shape[0]
		
	# get GJ connectivity
	GJ_pairs, GJWt = nu.GJ_conn( GoC_pos, prob_type, GJw_type )
	tmp1, tmp2 = valnet.gapJuncAnalysis( GJ_pairs, GJWt )
	print("Number of gap junctions per cell: ", tmp1)
	print("Net GJ conductance per cell:", tmp2)
	
	# Create pop List
	goc_pop = nml.Population( id=goc_type.id+"Pop", component = goc_type.id, type="populationList", size=N_goc )
	
	# Create NML document for network specification
	net = nml.Network( id="gocNetwork", type="networkWithTemperature" , temperature="23 degC" )
	net_doc = nml.NeuroMLDocument( id=net.id )
	net_doc.networks.append( net )
	net_doc.includes.append( goc_type )
	
	net.populations.append( goc_pop )
	
	#Add locations for GoC instances in the population:
	for goc in range(N_goc):
		inst = nml.Instance( id=goc )
		goc_pop.instances.append( inst )
		inst.location = nml.Location( x=GoC_pos[goc,0], y=GoC_pos[goc,1], z=GoC_pos[goc,2] )
		
	# Define input spiketrains
	input_type = 'spikeGenerator'#'spikeGeneratorPoisson'
	lems_inst_doc = lems.Model()
	mf_inputs = lems.Component( "MF_Input", input_type)
	mf_inputs.set_parameter("period", "2000 ms" )
	#mf_inputs.set_parameter("averageRate", "50 Hz")
	lems_inst_doc.add( mf_inputs )
	
	#synapse_type = 'alphaCurrentSynapse'
	#alpha_syn = lems.Component( "AlphaSyn", synapse_type)
	#alpha_syn.set_parameter("tau", "30 ms" )
	#alpha_syn.set_parameter("ibase", "200 pA")
	#lems_inst_doc.add( alpha_syn )
	
	# Define MF input population
	
	N_mf = 15
	#MF_pop = nml.Population(id=mf_inputs.id+"_pop", component=mf_inputs.id, type="populationList", size=N_mf)
	#net.populations.append( MF_pop )

	mf_type2 = 'spikeGeneratorPoisson'
	#mf_poisson = lems.Component( "MF_Poisson", mf_type2)
	#mf_poisson.set_parameter("averageRate", "5 Hz")
	#lems_inst_doc.add( mf_poisson )
	# adding in neuroml document instead of mf_poisson
	mf_poisson = nml.SpikeGeneratorPoisson( id = "MF_Poisson", average_rate="5 Hz" )
	net_doc.spike_generator_poissons.append( mf_poisson )
	
	net_doc.includes.append( goc_type )
	MF_Poisson_pop = nml.Population(id=mf_poisson.id+"_pop", component=mf_poisson.id, type="populationList", size=N_mf)
	net.populations.append( MF_Poisson_pop )
	MF_pos = nu.GoC_locate( N_mf )
	for mf in range( N_mf ):
		inst = nml.Instance(id=mf)
		MF_Poisson_pop.instances.append( inst )
		inst.location = nml.Location( x=MF_pos[mf,0], y=MF_pos[mf,1], z=MF_pos[mf,2] )
		
	# Setup Mf->GoC synapses
	#MFprojection = nml.Projection(id="MFtoGoC", presynaptic_population=MF_pop.id, postsynaptic_population=goc_pop.id, synapse=alpha_syn.id)
	#net.projections.append(MFprojection)

	MF2projection = nml.Projection(id="MF2toGoC", presynaptic_population=MF_Poisson_pop.id, postsynaptic_population=goc_pop.id, synapse=MFSyn_type.id)#alpha_syn.id
	net.projections.append(MF2projection)


	#Get list of MF->GoC synapse
	mf_synlist = nu.randdist_MF_syn( N_mf, N_goc, pConn=0.3)
	nMFSyn = mf_synlist.shape[1]
	for syn in range( nMFSyn ):
		mf, goc = mf_synlist[:, syn]
		conn2 = nml.Connection(id=syn, pre_cell_id='../{}/{}/{}'.format(MF_Poisson_pop.id, mf, mf_poisson.id), post_cell_id='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id), post_segment_id='0', post_fraction_along="0.5")
		MF2projection.connections.append(conn2)
		
		
	# Burst of MF input (as explicit input)
	mf_bursttype = 'transientPoissonFiringSynapse'
	mf_burst = lems.Component( "MF_Burst", mf_bursttype)
	mf_burst.set_parameter( "averageRate", "100 Hz" )
	mf_burst.set_parameter( "delay", "2000 ms" )
	mf_burst.set_parameter( "duration", "500 ms" )
	mf_burst.set_parameter( "synapse", MF20Syn_type.id )
	mf_burst.set_parameter( "spikeTarget", './{}'.format(MF20Syn_type.id) )
	lems_inst_doc.add( mf_burst )
	
	
	# Add few burst inputs
	n_bursts = 4
	gocPerm = np.random.permutation( N_goc )
	ctr = 0
	for gg in range(4):
		goc = gocPerm[gg]
		for jj in range( n_bursts ):
			inst = nml.ExplicitInput( id=ctr, target='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id), input=mf_burst.id, synapse=MF20Syn_type.id, spikeTarget='./{}'.format(MF20Syn_type.id))
			net.explicit_inputs.append( inst )
			ctr += 1
		
	
	'''
	one-to-one pairing of MF and GoC -> no shared inputs
	for goc in range(N_mf):
		#inst = nml.Instance(id=goc)
		#MF_pop.instances.append( inst )
		#inst.location = nml.Location( x=GoC_pos[goc,0], y=GoC_pos[goc,1], z=GoC_pos[goc,2]+100 )
		#conn = nml.Connection(id=goc, pre_cell_id='../{}/{}/{}'.format(MF_pop.id, goc, mf_inputs.id), post_cell_id='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id), post_segment_id='0', post_fraction_along="0.5")
		#MFprojection.connections.append(conn)

		goc2 = N_goc-goc-1
		inst2 = nml.Instance(id=goc)
		MF_Poisson_pop.instances.append( inst2 )
		inst2.location = nml.Location( x=GoC_pos[goc2,0], y=GoC_pos[goc2,1], z=GoC_pos[goc2,2]+100 )
		conn2 = nml.Connection(id=goc, pre_cell_id='../{}/{}/{}'.format(MF_Poisson_pop.id, goc, mf_poisson.id), post_cell_id='../{}/{}/{}'.format(goc_pop.id, goc2, goc_type.id), post_segment_id='0', post_fraction_along="0.5")
		MF2projection.connections.append(conn2)

	'''
	
	# Add electrical synapses
	GoCCoupling = nml.ElectricalProjection( id="gocGJ", presynaptic_population=goc_pop.id, postsynaptic_population=goc_pop.id )
	
	#print(GJ_pairs)
	gj = nml.GapJunction( id="GJ_0", conductance="426pS" )
	net_doc.gap_junctions.append(gj)
	nGJ = GJ_pairs.shape[0]
	for jj in range( nGJ ):
		#gj.append( lems.Component( "GJ_%d"%jj, 'gapJunction') )
		#gj[jj].set_parameter( "conductance", "%fnS"%(GJWt[jj]) )
		#gj = nml.GapJunction(id="GJ_%d"%jj, conductance="%fnS"%(GJWt[jj]))
		#net_doc.gap_junctions.append(gj)
		#lems_inst_doc.add( gj[jj] )
		#print("%fnS"%(GJWt[jj]*0.426))
		conn = nml.ElectricalConnectionInstanceW( id=jj, pre_cell='../{}/{}/{}'.format(goc_pop.id, GJ_pairs[jj,0], goc_type.id), pre_segment='1', pre_fraction_along='0.5', post_cell='../{}/{}/{}'.format(goc_pop.id, GJ_pairs[jj,1], goc_type.id), post_segment='1', post_fraction_along='0.5', synapse=gj.id, weight=GJWt[jj] )#synapse="GapJuncCML" synapse=gj.id , conductance="100E-9mS"
		# ------------ need to create GJ component
		GoCCoupling.electrical_connection_instance_ws.append( conn )
	
	net.electrical_projections.append( GoCCoupling )	
		
		
		
	net_filename = 'gocNetwork.nml'
	pynml.write_neuroml2_file( net_doc, net_filename )
	lems_filename = 'instances.xml'
	pynml.write_lems_file( lems_inst_doc, lems_filename, validate=False )

	simid = 'sim_gocnet'+goc_type.id
	ls = LEMSSimulation( simid, duration=duration, dt=dt, simulation_seed=seed )
	ls.assign_simulation_target( net.id )
	
	#ls.include_lems_file( 'Synapses.xml', include_included=False)
	#ls.include_lems_file( 'Inputs.xml', include_included=False)
	ls.include_neuroml2_file( net_filename)
	ls.include_neuroml2_file( goc_filename)
	ls.include_neuroml2_file( GJ_filename)
	ls.include_neuroml2_file( MFSyn_filename)
	ls.include_neuroml2_file( MF20Syn_filename)
	ls.include_lems_file( lems_filename, include_included=False)
	
	
	# Specify outputs
	eof0 = 'Events_file'
	ls.create_event_output_file(eof0, "%s.v.spikes"%simid,format='ID_TIME')
	for jj in range( goc_pop.size):
		ls.add_selection_to_event_output_file( eof0, jj, '{}/{}/{}'.format( goc_pop.id, jj, goc_type.id), 'spike' )
		
	of0 = 'Volts_file'
	ls.create_output_file(of0, "%s.v.dat"%simid)
	for jj in range( goc_pop.size ):
		ls.add_column_to_output_file(of0, jj, '{}/{}/{}/v'.format( goc_pop.id, jj, goc_type.id))
		
	#Create Lems file to run
	lems_simfile = ls.save_to_file()

	#res = pynml.run_lems_with_jneuroml( lems_simfile, max_memory="1G",nogui=True, plot=False)
	#res = pynml.run_lems_with_jneuroml_neuron( lems_simfile, max_memory="2G", only_generate_scripts = True, compile_mods = False, nogui=True, plot=False)
	res = pynml.run_lems_with_jneuroml_neuron( lems_simfile, max_memory="2G", compile_mods = False,nogui=True, plot=False)
	#res=True
	return res