'duration': defaultParams.Ttrans + defaultParams.Tblank
               })

net.cells.append(ssp_pre)

r = RectangularRegion(id='ISN_network',
                      x=0,
                      y=0,
                      z=0,
                      width=1000,
                      height=100,
                      depth=1000)
net.regions.append(r)

pE = Population(id='Epop',
                size='int(N*fraction_E)',
                component=cell.id,
                properties={'color': '0 0 0.8'})
pI = Population(id='Ipop',
                size='N - int(N*fraction_E)',
                component=cell.id,
                properties={'color': '.8 0 0'})

bkgPre = Population(id='Background_pre',
                    size='int(N*fraction_E)',
                    component=ssp_pre.id,
                    properties={'color': '.8 .8 .8'})

net.populations.append(pE)
net.populations.append(pI)
net.populations.append(bkgPre)
Exemplo n.º 2
0
def generate():

    dt = 0.025
    simtime = 1000

    ################################################################################
    ###   Build new network

    net = Network(id="Example7_Brunel2000")
    net.notes = "Example 7: based on network of Brunel 2000"

    net.parameters = {
        "g": 4,
        "eta": 1,
        "order": 5,
        "epsilon": 0.1,
        "J": 0.1,
        "delay": 1.5,
        "tauMem": 20.0,
        "tauSyn": 0.1,
        "tauRef": 2.0,
        "U0": 0.0,
        "theta": 20.0,
    }

    cell = Cell(id="ifcell", pynn_cell="IF_curr_alpha")

    cell.parameters = {
        "tau_m": "tauMem",
        "tau_refrac": "tauRef",
        "v_rest": "U0",
        "v_reset": "U0",
        "v_thresh": "theta",
        "cm": 0.001,
        "i_offset": 0,
    }

    # cell = Cell(id='hhcell', neuroml2_source_file='test_files/hhcell.cell.nml')
    net.cells.append(cell)

    poisson_input = Cell(id="poisson_input", pynn_cell="SpikeSourcePoisson")
    poisson_input.parameters = {
        "rate":
        "1000 * (eta*theta/(J*4*order*epsilon*tauMem)) * (4*order*epsilon)",
        "start": 0,
        "duration": 1e9,
    }
    net.cells.append(poisson_input)

    r1 = RectangularRegion(id="region1",
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=100,
                           depth=1000)
    net.regions.append(r1)

    pE = Population(
        id="Epop",
        size="4*order",
        component=cell.id,
        properties={
            "color": ".9 0 0",
            "radius": 5
        },
        random_layout=RandomLayout(region=r1.id),
    )
    pEpoisson = Population(
        id="expoisson",
        size="4*order",
        component=poisson_input.id,
        properties={
            "color": "0.9 0.7 0.7",
            "radius": 3
        },
        random_layout=RandomLayout(region=r1.id),
    )
    pI = Population(
        id="Ipop",
        size="1*order",
        component=cell.id,
        properties={
            "color": "0 0 .9",
            "radius": 5
        },
        random_layout=RandomLayout(region=r1.id),
    )
    pIpoisson = Population(
        id="inpoisson",
        size="1*order",
        component=poisson_input.id,
        properties={
            "color": "0.7 0.7 0.9",
            "radius": 3
        },
        random_layout=RandomLayout(region=r1.id),
    )

    net.populations.append(pE)
    net.populations.append(pEpoisson)
    net.populations.append(pI)
    net.populations.append(pIpoisson)

    net.synapses.append(
        Synapse(
            id="ampa",
            pynn_receptor_type="excitatory",
            pynn_synapse_type="curr_alpha",
            parameters={"tau_syn": 0.1},
        ))

    net.synapses.append(
        Synapse(
            id="gaba",
            pynn_receptor_type="inhibitory",
            pynn_synapse_type="curr_alpha",
            parameters={"tau_syn": 0.1},
        ))

    delay_ext = dt

    downscale = 1
    J_eff = "J*%s" % (downscale)
    # synaptic weights, scaled for alpha functions, such that
    # for constant membrane potential, charge J would be deposited
    fudge = 0.00041363506632638  # ensures dV = J at V=0
    JE = "((%s)/tauSyn)*%s" % (J_eff, fudge)
    JI = "-1*g*%s" % (JE)

    net.projections.append(
        Projection(
            id="projEinput",
            presynaptic=pEpoisson.id,
            postsynaptic=pE.id,
            synapse="ampa",
            delay=delay_ext,
            weight=JE,
            one_to_one_connector=OneToOneConnector(),
        ))

    net.projections.append(
        Projection(
            id="projIinput",
            presynaptic=pIpoisson.id,
            postsynaptic=pI.id,
            synapse="ampa",
            delay=delay_ext,
            weight=JE,
            one_to_one_connector=OneToOneConnector(),
        ))

    net.projections.append(
        Projection(
            id="projEE",
            presynaptic=pE.id,
            postsynaptic=pE.id,
            synapse="ampa",
            delay="delay",
            weight=JE,
            random_connectivity=RandomConnectivity(probability="epsilon"),
        ))

    net.projections.append(
        Projection(
            id="projEI",
            presynaptic=pE.id,
            postsynaptic=pI.id,
            synapse="ampa",
            delay="delay",
            weight=JE,
            random_connectivity=RandomConnectivity(probability="epsilon"),
        ))

    net.projections.append(
        Projection(
            id="projIE",
            presynaptic=pI.id,
            postsynaptic=pE.id,
            synapse="gaba",
            delay="delay",
            weight=JI,
            random_connectivity=RandomConnectivity(probability="epsilon"),
        ))

    net.projections.append(
        Projection(
            id="projII",
            presynaptic=pI.id,
            postsynaptic=pI.id,
            synapse="gaba",
            delay="delay",
            weight=JI,
            random_connectivity=RandomConnectivity(probability="epsilon"),
        ))

    # print(net)
    # print(net.to_json())
    new_file = net.to_json_file("%s.json" % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(
        id="SimExample7",
        network=new_file,
        duration=simtime,
        dt=dt,
        seed=123,
        record_traces={
            pE.id: [0, 1],
            pI.id: [0, 1]
        },
        record_spikes={
            pE.id: "*",
            pI.id: "*",
            pEpoisson.id: [0, 1, 2, 3, 4],
            pIpoisson.id: [0, 1, 2, 3, 4],
        },
    )

    sim.to_json_file()

    return sim, net
Exemplo n.º 3
0
def generate(ref, np2=0, np5=0, nb2=0, nb5=0, recordTraces='*'):
    ################################################################################
    ###   Build new network

    net = Network(id=ref)
    net.notes = 'Example: %s...' % ref

    net.seed = 7890
    net.temperature = 32

    net.parameters = {
        'np2': np2,
        'np5': np5,
        'nb2': nb2,
        'nb5': nb5,
        'offset_curr_l2p': -0.05,
        'weight_bkg_l2p': 0.01,
        'weight_bkg_l5p': 0.01
    }

    l2p_cell = Cell(id='CELL_HH_reduced_L2Pyr',
                    neuroml2_source_file='../CELL_HH_reduced_L2Pyr.cell.nml')
    net.cells.append(l2p_cell)
    l5p_cell = Cell(id='CELL_HH_reduced_L5Pyr',
                    neuroml2_source_file='../CELL_HH_reduced_L5Pyr.cell.nml')
    net.cells.append(l5p_cell)
    l2b_cell = Cell(id='CELL_HH_simple_L2Basket',
                    neuroml2_source_file='../CELL_HH_simple_L2Basket.cell.nml')
    net.cells.append(l2b_cell)
    l5b_cell = Cell(id='CELL_HH_simple_L5Basket',
                    neuroml2_source_file='../CELL_HH_simple_L5Basket.cell.nml')
    net.cells.append(l5b_cell)

    input_source_poisson100 = InputSource(id='poissonFiringSyn100Hz',
                                          neuroml2_source_file='../inputs.nml')
    net.input_sources.append(input_source_poisson100)

    input_offset_curr_l2p = InputSource(id='input_offset_curr_l2p',
                                        pynn_input='DCSource',
                                        parameters={
                                            'amplitude': 'offset_curr_l2p',
                                            'start': 0,
                                            'stop': 1e9
                                        })

    net.input_sources.append(input_offset_curr_l2p)

    l2 = RectangularRegion(id='L2',
                           x=0,
                           y=1000,
                           z=0,
                           width=1000,
                           height=10,
                           depth=1000)
    net.regions.append(l2)
    l5 = RectangularRegion(id='L5',
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=10,
                           depth=1000)
    net.regions.append(l5)

    #https://github.com/OpenSourceBrain/OpenCortex
    import opencortex.utils.color as occ

    pop_l2p = Population(id='pop_l2p',
                         size='np2',
                         component=l2p_cell.id,
                         properties={'color': occ.L23_PRINCIPAL_CELL},
                         random_layout=RandomLayout(region=l2.id))
    net.populations.append(pop_l2p)
    pop_l5p = Population(id='pop_l5p',
                         size='np5',
                         component=l5p_cell.id,
                         properties={'color': occ.L5_PRINCIPAL_CELL},
                         random_layout=RandomLayout(region=l5.id))
    net.populations.append(pop_l5p)
    pop_l2b = Population(id='pop_l2b',
                         size='nb2',
                         component=l2b_cell.id,
                         properties={'color': occ.L23_INTERNEURON},
                         random_layout=RandomLayout(region=l2.id))
    net.populations.append(pop_l2b)
    pop_l5b = Population(id='pop_l5b',
                         size='nb5',
                         component=l5b_cell.id,
                         properties={'color': occ.L5_INTERNEURON},
                         random_layout=RandomLayout(region=l5.id))
    net.populations.append(pop_l5b)

    # L2 -> L2
    _add_projection(pop_l2p,
                    pop_l2b,
                    'AMPA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l2b,
                    pop_l2p,
                    'L2Pyr_GABAA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l2b,
                    pop_l2p,
                    'L2Pyr_GABAB',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)

    # L2 -> L5
    _add_projection(pop_l2p,
                    pop_l5p,
                    'L5Pyr_AMPA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l2p,
                    pop_l5b,
                    'AMPA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l2b,
                    pop_l5p,
                    'L5Pyr_GABAA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)

    # L5 -> L5
    _add_projection(pop_l5p,
                    pop_l5b,
                    'AMPA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l5b,
                    pop_l5p,
                    'L5Pyr_GABAA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l5b,
                    pop_l5p,
                    'L5Pyr_GABAB',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)

    net.inputs.append(
        Input(id='stim_%s' % pop_l2p.id,
              input_source=input_source_poisson100.id,
              population=pop_l2p.id,
              percentage=100,
              weight='weight_bkg_l2p'))
    net.inputs.append(
        Input(id='stim_%s' % pop_l5p.id,
              input_source=input_source_poisson100.id,
              population=pop_l5p.id,
              percentage=100,
              weight='weight_bkg_l5p'))

    print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='Sim%s' % net.id,
                     network=new_file,
                     duration='500',
                     seed='1111',
                     dt='0.025',
                     recordTraces={'all': recordTraces},
                     recordSpikes={'all': '*'})

    sim.to_json_file()
    print(sim.to_json())

    return sim, net
                       width=1000,
                       height=100,
                       depth=1000)
net.regions.append(r1)

exc_cell = Cell(id='Exc', lems_source_file='WC_Parameters.xml')
inh_cell = Cell(id='Inh', lems_source_file='WC_Parameters.xml')
net.cells.append(exc_cell)
net.cells.append(inh_cell)

exc_pop = Population(id='Excitatory',
                     size=1,
                     component=exc_cell.id,
                     properties={
                         'color': '0.8 0 0',
                         'radius': 10
                     },
                     relative_layout=RelativeLayout(region=r1.id,
                                                    x=-20,
                                                    y=0,
                                                    z=0))

inh_pop = Population(id='Inhibitory',
                     size=1,
                     component=inh_cell.id,
                     properties={
                         'color': '0 0 0.8',
                         'radius': 10
                     },
                     relative_layout=RelativeLayout(region=r1.id,
                                                    x=20,
Exemplo n.º 5
0
def generate():
    ################################################################################
    ###   Build new network

    net = Network(id='ExampleK')
    net.notes = 'Example...'

    net.parameters = {'pop_size': '8', 'stim_amp': '0.3'}

    cell = Cell(id='kuramoto1', lems_source_file='CellExamples.xml')

    net.cells.append(cell)

    input_source = InputSource(id='iclamp0',
                               neuroml2_input='PulseGeneratorDL',
                               parameters={
                                   'amplitude': 'stim_amp',
                                   'delay': '100ms',
                                   'duration': '800ms'
                               })
    net.input_sources.append(input_source)
    '''

    input_source = InputSource(id='poissonFiringSyn', 
                               neuroml2_input='poissonFiringSynapse',
                               parameters={'average_rate':"eta", 'synapse':"ampa", 'spike_target':"./ampa"})


'''

    r1 = RectangularRegion(id='region1',
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=100,
                           depth=1000)
    net.regions.append(r1)

    pE = Population(id='Epop',
                    size='pop_size',
                    component=cell.id,
                    properties={'color': '1 0 0'},
                    random_layout=RandomLayout(region=r1.id))

    net.populations.append(pE)
    '''
    net.synapses.append(Synapse(id='ampa', 
                                pynn_receptor_type='excitatory', 
                                pynn_synapse_type='curr_alpha', 
                                parameters={'tau_syn':0.1}))


    net.projections.append(Projection(id='projEinput',
                                      presynaptic=pEpoisson.id, 
                                      postsynaptic=pE.id,
                                      synapse='ampa',
                                      delay=2,
                                      weight=0.02,
                                      one_to_one_connector=OneToOneConnector()))
               
    net.projections.append(Projection(id='projEE',
                                      presynaptic=pE.id, 
                                      postsynaptic=pE.id,
                                      synapse='ampa',
                                      delay=2,
                                      weight=0.002,
                                      random_connectivity=RandomConnectivity(probability=.5)))

    net.projections.append(Projection(id='projEI',
                                      presynaptic=pE.id, 
                                      postsynaptic=pI.id,
                                      synapse='ampa',
                                      delay=2,
                                      weight=0.02,
                                      random_connectivity=RandomConnectivity(probability=.5)))
    
    net.projections.append(Projection(id='projIE',
                                      presynaptic=pI.id, 
                                      postsynaptic=pE.id,
                                      synapse='gaba',
                                      delay=2,
                                      weight=0.02,
                                      random_connectivity=RandomConnectivity(probability=.5)))
    '''
    net.inputs.append(
        Input(id='stim',
              input_source=input_source.id,
              population=pE.id,
              percentage=50))

    #print(net)
    #print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='SimExampleK',
                     network=new_file,
                     duration='1000',
                     dt='0.025',
                     seed=123,
                     recordVariables={'sin_theta': {
                         pE.id: '*'
                     }})

    sim.to_json_file()

    return sim, net
Exemplo n.º 6
0
def generate():

    dt = 0.025
    simtime = 500

    ################################################################################
    ###   Build new network

    net = Network(id='SpikingEI')
    net.notes = 'SpikingEI'

    net.parameters = {
        'order': 5,
        'wee': 8,
        'wei': 12,
        'wie': -12,
        'wii': -3,
        'w_scale': 0.001,
        'in_rate': 400,
        'epsilon': 0.5,
        'tauMem': 20.0,
        'tauSyn': 0.1,
        'tauRef': 2.0
    }

    cell = Cell(id='ifcell', pynn_cell='IF_curr_alpha')

    cell.parameters = {
        'tau_m': 'tauMem',
        'tau_refrac': 'tauRef',
        'v_rest': -70,
        'v_reset': -70,
        'v_thresh': -50,
        'cm': 0.001,
        "i_offset": 0
    }

    #cell = Cell(id='hhcell', neuroml2_source_file='test_files/hhcell.cell.nml')
    net.cells.append(cell)

    poisson_input = Cell(id='poisson_input', pynn_cell='SpikeSourcePoisson')
    poisson_input.parameters = {'rate': 'in_rate', 'start': 0, 'duration': 1e9}
    net.cells.append(poisson_input)

    r1 = RectangularRegion(id='region1',
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=100,
                           depth=1000)
    net.regions.append(r1)

    pE = Population(id='Excitatory',
                    size='4*order',
                    component=cell.id,
                    properties={
                        'color': '.9 0 0',
                        'radius': 5
                    },
                    random_layout=RandomLayout(region=r1.id))
    pEpoisson = Population(id='expoisson',
                           size='4*order',
                           component=poisson_input.id,
                           properties={
                               'color': '0.9 0.7 0.7',
                               'radius': 3
                           },
                           random_layout=RandomLayout(region=r1.id))
    pI = Population(id='Inhibitory',
                    size='1*order',
                    component=cell.id,
                    properties={
                        'color': '0 0 .9',
                        'radius': 5
                    },
                    random_layout=RandomLayout(region=r1.id))
    pIpoisson = Population(id='inpoisson',
                           size='1*order',
                           component=poisson_input.id,
                           properties={
                               'color': '0.7 0.7 0.9',
                               'radius': 3
                           },
                           random_layout=RandomLayout(region=r1.id))

    net.populations.append(pE)
    net.populations.append(pEpoisson)
    net.populations.append(pI)
    net.populations.append(pIpoisson)

    net.synapses.append(
        Synapse(id='ampa',
                pynn_receptor_type='excitatory',
                pynn_synapse_type='curr_alpha',
                parameters={'tau_syn': 0.1}))

    net.synapses.append(
        Synapse(id='gaba',
                pynn_receptor_type='inhibitory',
                pynn_synapse_type='curr_alpha',
                parameters={'tau_syn': 0.1}))

    delay_ext = dt

    net.projections.append(
        Projection(id='projEinput',
                   presynaptic=pEpoisson.id,
                   postsynaptic=pE.id,
                   synapse='ampa',
                   delay=delay_ext,
                   weight=0.01,
                   one_to_one_connector=OneToOneConnector()))

    net.projections.append(
        Projection(id='projIinput',
                   presynaptic=pIpoisson.id,
                   postsynaptic=pI.id,
                   synapse='ampa',
                   delay=delay_ext,
                   weight=0.01,
                   one_to_one_connector=OneToOneConnector()))

    net.projections.append(
        Projection(
            id='projEE',
            presynaptic=pE.id,
            postsynaptic=pE.id,
            synapse='ampa',
            delay=delay_ext,
            weight='wee * w_scale',
            random_connectivity=RandomConnectivity(probability='epsilon')))

    net.projections.append(
        Projection(
            id='projEI',
            presynaptic=pE.id,
            postsynaptic=pI.id,
            synapse='ampa',
            delay=delay_ext,
            weight='wei * w_scale',
            random_connectivity=RandomConnectivity(probability='epsilon')))

    net.projections.append(
        Projection(
            id='projIE',
            presynaptic=pI.id,
            postsynaptic=pE.id,
            synapse='gaba',
            delay=delay_ext,
            weight='wie * w_scale',
            random_connectivity=RandomConnectivity(probability='epsilon')))

    net.projections.append(
        Projection(
            id='projII',
            presynaptic=pI.id,
            postsynaptic=pI.id,
            synapse='gaba',
            delay=delay_ext,
            weight='wii * w_scale',
            random_connectivity=RandomConnectivity(probability='epsilon')))

    #print(net)
    #print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='SimSpiking',
                     network=new_file,
                     duration=simtime,
                     dt=dt,
                     seed=123,
                     recordTraces={
                         pE.id: '*',
                         pI.id: '*'
                     },
                     recordSpikes={'all': '*'})

    sim.to_json_file()

    return sim, net
Exemplo n.º 7
0
net.input_sources.append(input_source_p0)

input_source1 = InputSource(
    id="iclamp1",
    pynn_input="DCSource",
    parameters={
        "amplitude": 0.8,
        "start": 100.0,
        "stop": 900.0
    },
)

net.input_sources.append(input_source1)

pop0 = Population(id="pop0",
                  size="N",
                  component=cell.id,
                  properties={"color": ".7 0 0"})
net.populations.append(pop0)
pop1 = Population(id="pop1",
                  size="N",
                  component=cell.id,
                  properties={"color": "0 .7 0"})
net.populations.append(pop1)
pop2 = Population(id="pop2",
                  size="N",
                  component=cell.id,
                  properties={"color": "0 .7 0.7"})
net.populations.append(pop2)
#

ipop0 = Population(id="input_pop0",
Exemplo n.º 8
0
     'rate':    100
}
net.cells.append(input_cell_100)


input_source_p0 = InputSource(id='poissonFiringSyn', neuroml2_source_file='../test_files/inputs.nml')
net.input_sources.append(input_source_p0)

input_source1 = InputSource(id='iclamp1', 
                           pynn_input='DCSource', 
                           parameters={'amplitude':0.8, 'start':100., 'stop':900.})
                           
net.input_sources.append(input_source1)


pop0 = Population(id='pop0', size='N', component=cell.id, properties={'color':'.7 0 0'})
net.populations.append(pop0)
pop1 = Population(id='pop1', size='N', component=cell.id, properties={'color':'0 .7 0'})
net.populations.append(pop1)
pop2 = Population(id='pop2', size='N', component=cell.id, properties={'color':'0 .7 0.7'})
net.populations.append(pop2)
#

ipop0 = Population(id='input_pop0', size='N', component=input_cell.id, properties={'color':'.7 .7 .7'})
net.populations.append(ipop0)
ipop1 = Population(id='input_pop1', size='N', component=input_cell_100.id, properties={'color':'.7 .1 .7'})
net.populations.append(ipop1)

#pRS = Population(id='RSpop', size='N - int(N*fractionE)', component=cell.id, properties={'color':'0 0 .7'})

#net.populations.append(pRS)
Exemplo n.º 9
0
def generate():

    dt = 0.025
    simtime = 1000

    ################################################################################
    ###   Build new network

    net = Network(id='ExampleIF')
    net.notes = 'Example with IF'

    net.parameters = {
        'tauMem': 20.0,
        'tauSyn': 0.1,
        'tauRef': 2,
        'V0': -70,
        'theta': -50.0,
        'scale': 1,
        'in_weight': 0.01,
        'in_rate': 50
    }

    ifcell = Cell(id='ifcell', pynn_cell='IF_curr_alpha')

    ifcell.parameters = {
        'tau_m': 'tauMem',
        'tau_refrac': 'tauRef',
        'v_rest': 'V0',
        'v_reset': 'V0',
        'v_thresh': 'theta',
        'cm': 0.001,
        "i_offset": 0
    }

    net.cells.append(ifcell)

    poisson_input = Cell(id='poisson_input', pynn_cell='SpikeSourcePoisson')
    poisson_input.parameters = {'rate': 'in_rate', 'start': 0, 'duration': 1e9}
    net.cells.append(poisson_input)

    r1 = RectangularRegion(id='region1',
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=100,
                           depth=1000)
    net.regions.append(r1)

    pIF = Population(id='IFpop',
                     size='1*scale',
                     component=ifcell.id,
                     properties={
                         'color': '.9 0 0',
                         'radius': 5
                     },
                     random_layout=RandomLayout(region=r1.id))
    net.populations.append(pIF)

    pLNP = Population(id='LNPpop',
                      size='1*scale',
                      component=ifcell.id,
                      properties={
                          'color': '.9 0.9 0',
                          'radius': 5
                      },
                      random_layout=RandomLayout(region=r1.id))
    net.populations.append(pLNP)

    pEpoisson = Population(id='expoisson',
                           size='10',
                           component=poisson_input.id,
                           properties={
                               'color': '0.9 0.7 0.7',
                               'radius': 3
                           },
                           random_layout=RandomLayout(region=r1.id))

    net.populations.append(pEpoisson)

    net.synapses.append(
        Synapse(id='ampa',
                pynn_receptor_type='excitatory',
                pynn_synapse_type='curr_alpha',
                parameters={'tau_syn': 0.1}))

    net.projections.append(
        Projection(id='proj0',
                   presynaptic=pEpoisson.id,
                   postsynaptic=pIF.id,
                   synapse='ampa',
                   delay=0,
                   weight='in_weight',
                   random_connectivity=RandomConnectivity(probability=0.7)))

    net.projections.append(
        Projection(id='proj1',
                   presynaptic=pEpoisson.id,
                   postsynaptic=pLNP.id,
                   synapse='ampa',
                   delay=0,
                   weight='in_weight',
                   random_connectivity=RandomConnectivity(probability=0.7)))

    #print(net)
    #print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='SimExampleIF',
                     network=new_file,
                     duration=simtime,
                     dt=dt,
                     seed=123,
                     recordTraces={pIF.id: '*'},
                     recordSpikes={'all': '*'})

    sim.to_json_file()

    return sim, net

stim1 = InputSource(id='stim1', 
                           pynn_input='DCSource', 
                           parameters={'amplitude':0.4, 'start':'stim1_delay', 'stop':'stim1_delay+5'})
net.input_sources.append(stim1)

stim2 = InputSource(id='stim2', 
                           pynn_input='DCSource', 
                           parameters={'amplitude':0.4, 'start':'stim2_delay', 'stop':'stim2_delay+5'})
net.input_sources.append(stim2)

r1 = RectangularRegion(id='region1', x=0,y=0,z=0,width=1000,height=100,depth=1000)
net.regions.append(r1)

p0 = Population(id='pop0', size=1, component=spkArr1.id, properties={'color':'1 0 0', 'radius':10},random_layout = RandomLayout(region=r1.id))
p1 = Population(id='pop1', size=1, component=cell.id, properties={'color':'0 1 0'},random_layout = RandomLayout(region=r1.id))

net.populations.append(p0)
net.populations.append(p1)

syn = Synapse(id='AMPA_preLTP', neuroml2_source_file='fourPathwaySyn.synapse.nml')
syn = Synapse(id='AMPA_postLTD', neuroml2_source_file='fourPathwaySyn.synapse.nml')
net.synapses.append(syn)
                      

net.projections.append(Projection(id='proj0',
                                  presynaptic=p0.id, 
                                  postsynaptic=p1.id,
                                  synapse=syn.id,
                                  delay=0,
Exemplo n.º 11
0
################################################################################
###   Build a new network

net = Network(id="net0")
net.notes = (
    "A simple network with 2 populations & projection between them. " +
    "No info yet on what the cells are so network can't be simulated.")

print(net)

################################################################################
###   Add some populations

p0 = Population(id="pop0",
                size=5,
                component="iaf",
                properties={"color": "0 .8 0"})
p1 = Population(id="pop1",
                size=10,
                component="iaf",
                properties={"color": "0 0 .8"})

print(p1.to_json())

net.populations.append(p0)
net.populations.append(p1)

################################################################################
###   Add a projection

net.projections.append(
Exemplo n.º 12
0
    "I": 5.0,
    "x1": -1.3,
    "r": 0.002,
    "x0": -1.3,
    "y0": -1.0,
    "z0": 1.0,
}

for p in params:
    cell.parameters[p] = p
    net.parameters[p] = params[p]

net.cells.append(cell)

pop = Population(id="hrPop",
                 size="1",
                 component=cell.id,
                 properties={"color": ".7 0 0"})
net.populations.append(pop)

print(net)
print(net.to_json())
new_file = net.to_json_file("%s.json" % net.id)

################################################################################
###   Build Simulation object & save as JSON

sim = Simulation(
    id="SimExample9",
    network=new_file,
    duration="1000000",
    dt="25",
net.regions.append(r2)

exc_cell = Cell(id='Exc', lems_source_file='../WC_Parameters.xml')
inh_cell = Cell(
    id='Inh',
    lems_source_file='../RateBased.xml')  #  hack to include this file too.

net.cells.append(exc_cell)
net.cells.append(inh_cell)

pc_pop = Population(id='PC',
                    size=1,
                    component=exc_cell.id,
                    properties={
                        'color': '.92 .92 .92',
                        'radius': 10
                    },
                    relative_layout=RelativeLayout(region=r0.id,
                                                   x=-20,
                                                   y=0,
                                                   z=0))
net.populations.append(pc_pop)

fc_pop = Population(id='FC',
                    size=1,
                    component=exc_cell.id,
                    properties={
                        'color': '.92 .92 .92',
                        'radius': 10
                    },
                    relative_layout=RelativeLayout(region=r1.id,
Exemplo n.º 14
0
Arquivo: ABCD.py Projeto: kmantel/MDF
def generate():

    dt = 100  # ms, so 0.1s
    simtime = 5000  # ms, so 50s

    ################################################################################
    ###   Build new network

    net = Network(id="ABCD")
    net.notes = "Example of a simplified network"

    net.parameters = {"A_initial": 0.1, "A_slope": 2.2}

    cellInput = Cell(id="a_input",
                     lems_source_file="PNL.xml",
                     parameters={"variable": "A_initial"})

    net.cells.append(cellInput)

    cellA = Cell(id="a", lems_source_file="PNL.xml")
    net.cells.append(cellA)
    cellB = Cell(id="b", lems_source_file="PNL.xml")
    net.cells.append(cellB)
    cellC = Cell(id="c", lems_source_file="PNL.xml")
    net.cells.append(cellC)
    cellD = Cell(id="d", lems_source_file="PNL.xml")
    net.cells.append(cellD)

    rsDL = Synapse(id="rsDL", lems_source_file="PNL.xml")
    net.synapses.append(rsDL)

    r1 = RectangularRegion(id="region1",
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=100,
                           depth=1000)
    net.regions.append(r1)

    pAin = Population(
        id="A_input",
        size="1",
        component=cellInput.id,
        properties={
            "color": "0.2 0.2 0.2",
            "radius": 3
        },
        random_layout=RandomLayout(region=r1.id),
    )
    net.populations.append(pAin)

    pA = Population(
        id="A",
        size="1",
        component=cellA.id,
        properties={
            "color": "0 0.9 0",
            "radius": 5
        },
        random_layout=RandomLayout(region=r1.id),
    )
    net.populations.append(pA)

    pB = Population(
        id="B",
        size="1",
        component=cellB.id,
        properties={
            "color": ".8 .8 .8",
            "radius": 5
        },
        random_layout=RandomLayout(region=r1.id),
    )
    net.populations.append(pB)

    pC = Population(
        id="C",
        size="1",
        component=cellC.id,
        properties={
            "color": "0.7 0.7 0.7",
            "radius": 5
        },
        random_layout=RandomLayout(region=r1.id),
    )
    net.populations.append(pC)

    pD = Population(
        id="D",
        size="1",
        component=cellD.id,
        properties={
            "color": "0.7 0 0",
            "radius": 5
        },
        random_layout=RandomLayout(region=r1.id),
    )
    net.populations.append(pD)

    silentDLin = Synapse(id="silentSyn_proj_input", lems_source_file="PNL.xml")
    net.synapses.append(silentDLin)
    net.projections.append(
        Projection(
            id="proj_input",
            presynaptic=pA.id,
            postsynaptic=pB.id,
            synapse=rsDL.id,
            pre_synapse=silentDLin.id,
            type="continuousProjection",
            weight=1,
            random_connectivity=RandomConnectivity(probability=1),
        ))

    silentDL0 = Synapse(id="silentSyn_proj0", lems_source_file="PNL.xml")
    net.synapses.append(silentDL0)
    net.projections.append(
        Projection(
            id="proj0",
            presynaptic=pAin.id,
            postsynaptic=pA.id,
            synapse=rsDL.id,
            pre_synapse=silentDL0.id,
            type="continuousProjection",
            weight=1,
            random_connectivity=RandomConnectivity(probability=1),
        ))

    silentDL1 = Synapse(id="silentSyn_proj1", lems_source_file="PNL.xml")
    net.synapses.append(silentDL1)
    net.projections.append(
        Projection(
            id="proj1",
            presynaptic=pA.id,
            postsynaptic=pC.id,
            synapse=rsDL.id,
            pre_synapse=silentDL1.id,
            type="continuousProjection",
            weight=1,
            random_connectivity=RandomConnectivity(probability=1),
        ))

    silentDL2 = Synapse(id="silentSyn_proj2", lems_source_file="PNL.xml")
    net.synapses.append(silentDL2)
    net.projections.append(
        Projection(
            id="proj2",
            presynaptic=pB.id,
            postsynaptic=pD.id,
            synapse=rsDL.id,
            pre_synapse=silentDL2.id,
            type="continuousProjection",
            weight=1,
            random_connectivity=RandomConnectivity(probability=1),
        ))

    silentDL3 = Synapse(id="silentSyn_proj3", lems_source_file="PNL.xml")
    net.synapses.append(silentDL3)
    net.projections.append(
        Projection(
            id="proj3",
            presynaptic=pC.id,
            postsynaptic=pD.id,
            synapse=rsDL.id,
            pre_synapse=silentDL3.id,
            type="continuousProjection",
            weight=1,
            random_connectivity=RandomConnectivity(probability=1),
        ))

    new_file = net.to_json_file("%s.json" % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(
        id="Sim%s" % net.id,
        network=new_file,
        duration=simtime,
        dt=dt,
        seed=123,
        recordVariables={"OUTPUT": {
            "all": "*"
        }},
    )  # ,'INPUT':{'all':'*'}

    sim.to_json_file()

    return sim, net
Exemplo n.º 15
0
def generate():
    
    dt = 0.025
    simtime = 1000
    
    ################################################################################
    ###   Build new network

    net = Network(id='Example7_Brunel2000')
    net.notes = 'Example 7: based on network of Brunel 2000'
    

    net.parameters = { 'g':       4, 
                       'eta':     1, 
                       'order':   5,
                       'epsilon': 0.1,
                       'J':       0.1,
                       'delay':   1.5,
                       'tauMem':  20.0,
                       'tauSyn':  0.1,
                       'tauRef':  2.0,
                       'U0':      0.0,
                       'theta':   20.0}

    cell = Cell(id='ifcell', pynn_cell='IF_curr_alpha')


    cell.parameters = { 'tau_m':       'tauMem', 
                        'tau_refrac':  'tauRef',
                        'v_rest':      'U0',
                        'v_reset':     'U0',
                        'v_thresh':    'theta',
                        'cm':          0.001,
                        "i_offset":    0}

    #cell = Cell(id='hhcell', neuroml2_source_file='test_files/hhcell.cell.nml')
    net.cells.append(cell)

    poisson_input = Cell(id='poisson_input', pynn_cell='SpikeSourcePoisson')
    poisson_input.parameters = { 'rate':       '1000 * (eta*theta/(J*4*order*epsilon*tauMem)) * (4*order*epsilon)',
                             'start':      0,
                             'duration':   1e9}
    net.cells.append(poisson_input)

    r1 = RectangularRegion(id='region1', x=0,y=0,z=0,width=1000,height=100,depth=1000)
    net.regions.append(r1)

    pE = Population(id='Epop', 
                    size='4*order', 
                    component=cell.id, 
                    properties={'color':'.9 0 0', 'radius':5},
                    random_layout = RandomLayout(region=r1.id))
    pEpoisson = Population(id='expoisson', 
                           size='4*order', 
                           component=poisson_input.id, 
                           properties={'color':'0.9 0.7 0.7', 'radius':3},
                           random_layout = RandomLayout(region=r1.id))
    pI = Population(id='Ipop', 
                    size='1*order', 
                    component=cell.id, 
                    properties={'color':'0 0 .9', 'radius':5},
                    random_layout = RandomLayout(region=r1.id))
    pIpoisson = Population(id='inpoisson', 
                           size='1*order', 
                           component=poisson_input.id, 
                           properties={'color':'0.7 0.7 0.9', 'radius':3},
                           random_layout = RandomLayout(region=r1.id))

    net.populations.append(pE)
    net.populations.append(pEpoisson)
    net.populations.append(pI)
    net.populations.append(pIpoisson)


    net.synapses.append(Synapse(id='ampa', 
                                pynn_receptor_type='excitatory', 
                                pynn_synapse_type='curr_alpha', 
                                parameters={'tau_syn':0.1}))
                                
    net.synapses.append(Synapse(id='gaba', 
                                pynn_receptor_type='inhibitory', 
                                pynn_synapse_type='curr_alpha', 
                                parameters={'tau_syn':0.1}))

    delay_ext = dt
    
    downscale   = 1
    J_eff     = 'J*%s'%(downscale)
    # synaptic weights, scaled for alpha functions, such that
    # for constant membrane potential, charge J would be deposited
    fudge = 0.00041363506632638  # ensures dV = J at V=0
    JE = '((%s)/tauSyn)*%s'%(J_eff,fudge)
    JI = '-1*g*%s'%(JE)
    
    net.projections.append(Projection(id='projEinput',
                                      presynaptic=pEpoisson.id, 
                                      postsynaptic=pE.id,
                                      synapse='ampa',
                                      delay=delay_ext,
                                      weight=JE,
                                      one_to_one_connector=OneToOneConnector()))
    
    net.projections.append(Projection(id='projIinput',
                                      presynaptic=pIpoisson.id, 
                                      postsynaptic=pI.id,
                                      synapse='ampa',
                                      delay=delay_ext,
                                      weight=JE,
                                      one_to_one_connector=OneToOneConnector()))
                                      
           
    net.projections.append(Projection(id='projEE',
                                      presynaptic=pE.id, 
                                      postsynaptic=pE.id,
                                      synapse='ampa',
                                      delay='delay',
                                      weight=JE,
                                      random_connectivity=RandomConnectivity(probability='epsilon')))

    net.projections.append(Projection(id='projEI',
                                      presynaptic=pE.id, 
                                      postsynaptic=pI.id,
                                      synapse='ampa',
                                      delay='delay',
                                      weight=JE,
                                      random_connectivity=RandomConnectivity(probability='epsilon')))
    
    net.projections.append(Projection(id='projIE',
                                      presynaptic=pI.id, 
                                      postsynaptic=pE.id,
                                      synapse='gaba',
                                      delay='delay',
                                      weight=JI,
                                      random_connectivity=RandomConnectivity(probability='epsilon')))
                                      
    net.projections.append(Projection(id='projII',
                                      presynaptic=pI.id, 
                                      postsynaptic=pI.id,
                                      synapse='gaba',
                                      delay='delay',
                                      weight=JI,
                                      random_connectivity=RandomConnectivity(probability='epsilon')))

    #print(net)
    #print(net.to_json())
    new_file = net.to_json_file('%s.json'%net.id)


    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='SimExample7',
                     network=new_file,
                     duration=simtime,
                     dt=dt,
                     seed= 123,
                     recordTraces={pE.id:[0,1],pI.id:[0,1]},
                     recordSpikes={pE.id:'*', pI.id:'*',pEpoisson.id:[0,1,2,3,4],pIpoisson.id:[0,1,2,3,4]})

    sim.to_json_file()
    
    return sim, net
Exemplo n.º 16
0
def generate():
    
    dt = 0.05
    simtime = 100
    
    ################################################################################
    ###   Build new network

    net = Network(id='FN')
    net.notes = 'Example of simplified network'
    
    net.parameters = { 'initial_w': 0.0, 
                       'initial_v': -1, 
                       'a_v': -0.3333333333333333, 
                       'b_v': 0.0, 
                       'c_v': 1.0, 
                       'd_v': 1, 
                       'e_v': -1.0, 
                       'f_v': 1.0, 
                       'time_constant_v': 1.0, 
                       'a_w': 1.0, 
                       'b_w': -0.8, 
                       'c_w': 0.7, 
                       'time_constant_w': 12.5, 
                       'threshold': -1.0, 
                       'mode': 1.0, 
                       'uncorrelated_activity': 0.0, 
                       'Iext': 0 }

    cellInput = Cell(id='fn', 
                     lems_source_file='FN_Definitions.xml',
                     parameters={})
    for p in net.parameters:
        cellInput.parameters[p]=p
    net.cells.append(cellInput)


    r1 = RectangularRegion(id='region1', x=0,y=0,z=0,width=1000,height=100,depth=1000)
    net.regions.append(r1)


    pop = Population(id='FNpop', 
                    size='1', 
                    component=cellInput.id, 
                    properties={'color':'0.2 0.2 0.2', 'radius':3},
                    random_layout = RandomLayout(region=r1.id))
    net.populations.append(pop)


    

    new_file = net.to_json_file('%s.json'%net.id)


    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='Sim%s'%net.id,
                     network=new_file,
                     duration=simtime,
                     dt=dt,
                     seed= 123,
                     recordVariables={'V':{'all':'*'},'W':{'all':'*'}},
                     plots2D={'VW':{'x_axis':'%s/0/fn/V'%pop.id,
                                 'y_axis':'%s/0/fn/W'%pop.id}})

    sim.to_json_file()
    
    return sim, net
Exemplo n.º 17
0
Arquivo: FN.py Projeto: kmantel/MDF
def generate():

    dt = 0.05
    simtime = 100

    ################################################################################
    ###   Build new network

    net = Network(id="FN")
    net.notes = "FitzHugh Nagumo cell model - originally specified in NeuroML/LEMS"

    net.parameters = {
        "initial_w": 0.0,
        "initial_v": -1,
        "a_v": -0.3333333333333333,
        "b_v": 0.0,
        "c_v": 1.0,
        "d_v": 1,
        "e_v": -1.0,
        "f_v": 1.0,
        "time_constant_v": 1.0,
        "a_w": 1.0,
        "b_w": -0.8,
        "c_w": 0.7,
        "time_constant_w": 12.5,
        "threshold": -1.0,
        "mode": 1.0,
        "uncorrelated_activity": 0.0,
        "Iext": 0,
    }

    cellInput = Cell(id="fn",
                     lems_source_file="FN_Definitions.xml",
                     parameters={})
    for p in net.parameters:
        cellInput.parameters[p] = p
    net.cells.append(cellInput)

    r1 = RectangularRegion(id="region1",
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=100,
                           depth=1000)
    net.regions.append(r1)

    pop = Population(
        id="FNpop",
        size="1",
        component=cellInput.id,
        properties={
            "color": "0.2 0.2 0.2",
            "radius": 3
        },
        random_layout=RandomLayout(region=r1.id),
    )
    net.populations.append(pop)

    new_file = net.to_json_file("%s.json" % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(
        id="Sim%s" % net.id,
        network=new_file,
        duration=simtime,
        dt=dt,
        seed=123,
        recordVariables={
            "V": {
                "all": "*"
            },
            "W": {
                "all": "*"
            }
        },
        plots2D={
            "VW": {
                "x_axis": "%s/0/fn/V" % pop.id,
                "y_axis": "%s/0/fn/W" % pop.id
            }
        },
    )

    sim.to_json_file()

    return sim, net
Exemplo n.º 18
0
net.input_sources.append(input_source)

r1 = RectangularRegion(id="region1",
                       x=0,
                       y=0,
                       z=0,
                       width=1000,
                       height=100,
                       depth=1000)
net.regions.append(r1)

p0 = Population(
    id="pop0",
    size=2,
    component=cell.id,
    properties={
        "color": "1 0 0",
        "radius": 20
    },
    random_layout=RandomLayout(region=r1.id),
)
p1 = Population(
    id="pop1",
    size=2,
    component=cell2.id,
    properties={
        "color": "0 1 0",
        "radius": 20
    },
    random_layout=RandomLayout(region=r1.id),
)
p2 = Population(
Exemplo n.º 19
0
cell = Cell(id='izhCell', neuroml2_cell='izhikevich2007Cell')
cell.parameters = {}

params = {'v0':'-60mV', 'C':'100 pF', 'k':'0.7 nS_per_mV', \
          'vr':'-60 mV', 'vt':'-40 mV', 'vpeak':'35 mV', \
          'a':'0.03 per_ms', 'b':'-2 nS', 'c':'-50 mV', 'd':'100 pA'}

for p in params:
    cell.parameters[p] = p
    net.parameters[p] = params[p]

net.cells.append(cell)

pop = Population(id='izhPop',
                 size='1',
                 component=cell.id,
                 properties={'color': '.7 0 0'})
net.populations.append(pop)

net.parameters['delay'] = '100ms'
net.parameters['stim_amp'] = '100pA'
net.parameters['duration'] = '500ms'
input_source = InputSource(id='iclamp_0',
                           neuroml2_input='PulseGenerator',
                           parameters={
                               'amplitude': 'stim_amp',
                               'delay': 'delay',
                               'duration': 'duration'
                           })
net.input_sources.append(input_source)
Exemplo n.º 20
0
def generate():

    dt = 0.1
    simtime = 1

    ################################################################################
    ###   Build new network

    net = Network(id='ABC')
    net.notes = 'Example of simplified network'

    net.parameters = {'A_initial': 0, 'A_slope': 5}

    cellInput = Cell(id='a_input',
                     lems_source_file='PNL.xml',
                     parameters={'variable': 'A_initial'})
    net.cells.append(cellInput)

    cellA = Cell(id='a',
                 lems_source_file='PNL.xml',
                 parameters={'slope': 'A_slope'})
    net.cells.append(cellA)
    cellB = Cell(id='b', lems_source_file='PNL.xml')
    net.cells.append(cellB)
    cellC = Cell(id='c', lems_source_file='PNL.xml')
    net.cells.append(cellC)

    rsDL = Synapse(id='rsDL', lems_source_file='PNL.xml')
    net.synapses.append(rsDL)

    r1 = RectangularRegion(id='region1',
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=100,
                           depth=1000)
    net.regions.append(r1)

    pAin = Population(id='A_input',
                      size='1',
                      component=cellInput.id,
                      properties={
                          'color': '0.2 0.2 0.2',
                          'radius': 3
                      },
                      random_layout=RandomLayout(region=r1.id))
    net.populations.append(pAin)

    pA = Population(id='A',
                    size='1',
                    component=cellA.id,
                    properties={
                        'color': '0 0.9 0',
                        'radius': 5
                    },
                    random_layout=RandomLayout(region=r1.id))
    net.populations.append(pA)

    pB = Population(id='B',
                    size='1',
                    component=cellB.id,
                    properties={
                        'color': '.9 0 0',
                        'radius': 5
                    },
                    random_layout=RandomLayout(region=r1.id))
    net.populations.append(pB)

    pC = Population(id='C',
                    size='1',
                    component=cellC.id,
                    properties={
                        'color': '0.7 0 0',
                        'radius': 5
                    },
                    random_layout=RandomLayout(region=r1.id))
    net.populations.append(pC)

    silentDLin = Synapse(id='silentSyn_proj_input', lems_source_file='PNL.xml')
    net.synapses.append(silentDLin)
    net.projections.append(
        Projection(id='proj_input',
                   presynaptic=pA.id,
                   postsynaptic=pB.id,
                   synapse=rsDL.id,
                   pre_synapse=silentDLin.id,
                   type='continuousProjection',
                   weight=1,
                   random_connectivity=RandomConnectivity(probability=1)))

    silentDL0 = Synapse(id='silentSyn_proj0', lems_source_file='PNL.xml')
    net.synapses.append(silentDL0)
    net.projections.append(
        Projection(id='proj0',
                   presynaptic=pAin.id,
                   postsynaptic=pA.id,
                   synapse=rsDL.id,
                   pre_synapse=silentDL0.id,
                   type='continuousProjection',
                   weight=1,
                   random_connectivity=RandomConnectivity(probability=1)))

    silentDL1 = Synapse(id='silentSyn_proj1', lems_source_file='PNL.xml')
    net.synapses.append(silentDL1)
    net.projections.append(
        Projection(id='proj1',
                   presynaptic=pA.id,
                   postsynaptic=pC.id,
                   synapse=rsDL.id,
                   pre_synapse=silentDL1.id,
                   type='continuousProjection',
                   weight=1,
                   random_connectivity=RandomConnectivity(probability=1)))

    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='Sim%s' % net.id,
                     network=new_file,
                     duration=simtime,
                     dt=dt,
                     seed=123,
                     recordVariables={
                         'OUTPUT': {
                             'all': '*'
                         },
                         'INPUT': {
                             'all': '*'
                         }
                     })

    sim.to_json_file()

    return sim, net
Exemplo n.º 21
0
net.parameters = { 'N': 10, 'fractionE': 0.8, 'weightInput': 1, 'Wei':0.01, 'Wie':0.01}


cell = Cell(id='iafcell', pynn_cell='IF_cond_alpha')
cell.parameters = { "tau_refrac":0}
net.cells.append(cell)


input_source = InputSource(id='poissonFiringSyn100Hz', neuroml2_source_file='inputs.nml')
net.input_sources.append(input_source)

                           
net.input_sources.append(input_source)


pE = Population(id='Epop', size='int(N*fractionE)', component=cell.id, properties={'color':'.7 0 0'})
pI = Population(id='Ipop', size='N - int(N*fractionE)', component=cell.id, properties={'color':'0 0 .7'})

net.populations.append(pE)
net.populations.append(pI)

net.synapses.append(Synapse(id='ampaSyn', 
                            pynn_receptor_type='excitatory', 
                            pynn_synapse_type='cond_alpha', 
                            parameters={'e_rev':-10, 'tau_syn':2}))
                            
net.synapses.append(Synapse(id='gabaSyn', 
                            pynn_receptor_type='inhibitory', 
                            pynn_synapse_type='cond_alpha', 
                            parameters={'e_rev':-80, 'tau_syn':10}))
                            
Exemplo n.º 22
0
input_source = InputSource(
    id="poissonFiringSyn", neuroml2_source_file="test_files/inputs.nml"
)
net.input_sources.append(input_source)
"""
input_source = InputSource(id='iclamp0',
                           pynn_input='DCSource',
                           parameters={'amplitude':0.2, 'start':100., 'stop':900.})"""

net.input_sources.append(input_source)


pE = Population(
    id="Epop",
    size="int(N*fractionE)",
    component=cell.id,
    properties={"color": ".7 0 0"},
)
pRS = Population(
    id="RSpop",
    size="N - int(N*fractionE)",
    component=cell.id,
    properties={"color": "0 0 .7"},
)

net.populations.append(pE)
net.populations.append(pRS)

net.synapses.append(
    Synapse(id="ampa", neuroml2_source_file="test_files/ampa.synapse.nml")
)
Exemplo n.º 23
0
)
net.input_sources.append(input_source)

r1 = RectangularRegion(id="region1",
                       x=0,
                       y=0,
                       z=0,
                       width=1000,
                       height=100,
                       depth=1000)
net.regions.append(r1)

p0 = Population(
    id="pop0",
    size=2,
    component=cell.id,
    properties={"color": "1 0 0"},
    random_layout=RandomLayout(region=r1.id),
)
net.populations.append(p0)
"""
p1 = Population(id='pop1', size=2, component=cell2.id, properties={'color':'0 1 0'},random_layout = RandomLayout(region=r1.id))
p2 = Population(id='pop2', size=1, component=cell2.id, properties={'color':'0 0 1'},random_layout = RandomLayout(region=r1.id))

net.populations.append(p1)
net.populations.append(p2)"""
"""
net.synapses.append(Synapse(id='ampaSyn', 
                            pynn_receptor_type='excitatory', 
                            pynn_synapse_type='cond_alpha', 
                            parameters={'e_rev':-10, 'tau_syn':2}))
Exemplo n.º 24
0
def generate():
    ################################################################################
    ###   Build new network

    net = Network(id='Example7_Brunel2000')
    net.notes = 'Example 7: based on network of Brunel 2000'

    net.parameters = {
        'g': 4,
        'eta': 1,
        'order': 5,
        'epsilon': 0.1,
        'J': 0.1,
        'delay': 1.5,
        'tauMem': 20.0,
        'tauSyn': 0.1,
        'tauRef': 2.0,
        'U0': 0.0,
        'theta': 20.0
    }

    cell = Cell(id='ifcell', pynn_cell='IF_curr_alpha')

    cell.parameters = {
        'tau_m': 'tauMem',
        'tau_refrac': 'tauRef',
        'v_rest': 'U0',
        'v_reset': 'U0',
        'v_thresh': 'theta',
        'cm': 0.001,
        "i_offset": 0
    }

    #cell = Cell(id='hhcell', neuroml2_source_file='test_files/hhcell.cell.nml')
    net.cells.append(cell)

    expoisson = Cell(id='expoisson', pynn_cell='SpikeSourcePoisson')
    expoisson.parameters = {
        'rate':
        '1000 * (eta*theta/(J*4*order*epsilon*tauMem)) * (4*order*epsilon)',
        'start': 0,
        'duration': 1e9
    }
    net.cells.append(expoisson)
    '''
    input_source = InputSource(id='iclamp0', 
                               pynn_input='DCSource', 
                               parameters={'amplitude':0.002, 'start':100., 'stop':900.})

    input_source = InputSource(id='poissonFiringSyn', 
                               neuroml2_input='poissonFiringSynapse',
                               parameters={'average_rate':"eta", 'synapse':"ampa", 'spike_target':"./ampa"})



    net.input_sources.append(input_source)'''

    pE = Population(id='Epop',
                    size='4*order',
                    component=cell.id,
                    properties={'color': '1 0 0'})
    pEpoisson = Population(id='Einput',
                           size='4*order',
                           component=expoisson.id,
                           properties={'color': '.5 0 0'})
    pI = Population(id='Ipop',
                    size='1*order',
                    component=cell.id,
                    properties={'color': '0 0 1'})

    net.populations.append(pE)
    net.populations.append(pEpoisson)
    net.populations.append(pI)

    net.synapses.append(
        Synapse(id='ampa',
                pynn_receptor_type='excitatory',
                pynn_synapse_type='curr_alpha',
                parameters={'tau_syn': 0.1}))
    net.synapses.append(
        Synapse(id='gaba',
                pynn_receptor_type='inhibitory',
                pynn_synapse_type='curr_alpha',
                parameters={'tau_syn': 0.1}))

    net.projections.append(
        Projection(id='projEinput',
                   presynaptic=pEpoisson.id,
                   postsynaptic=pE.id,
                   synapse='ampa',
                   delay=2,
                   weight=0.02,
                   one_to_one_connector=OneToOneConnector()))
    '''           
    net.projections.append(Projection(id='projEE',
                                      presynaptic=pE.id, 
                                      postsynaptic=pE.id,
                                      synapse='ampa',
                                      delay=2,
                                      weight=0.002,
                                      random_connectivity=RandomConnectivity(probability=.5)))'''

    net.projections.append(
        Projection(id='projEI',
                   presynaptic=pE.id,
                   postsynaptic=pI.id,
                   synapse='ampa',
                   delay=2,
                   weight=0.02,
                   random_connectivity=RandomConnectivity(probability=.5)))
    '''
    net.projections.append(Projection(id='projIE',
                                      presynaptic=pI.id, 
                                      postsynaptic=pE.id,
                                      synapse='gaba',
                                      delay=2,
                                      weight=0.02,
                                      random_connectivity=RandomConnectivity(probability=.5)))

    net.inputs.append(Input(id='stim',
                            input_source=input_source.id,
                            population=pE.id,
                            percentage=50))'''

    #print(net)
    #print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='SimExample7',
                     network=new_file,
                     duration='1000',
                     dt='0.025',
                     seed=123,
                     recordTraces={
                         pE.id: '*',
                         pI.id: '*'
                     },
                     recordSpikes={'all': '*'})

    sim.to_json_file()

    return sim, net
Exemplo n.º 25
0
print(len(all_tgts))

f = open('Neuron_2015_Table.csv')
pop_ids = []

for l in f:
    #print l
    w = l.split(',')
    tgt = w[0]
    src = w[1]
    if tgt!='TARGET' and src in all_tgts:
        fln = float(w[2])
        print('Adding conn from %s to %s with FLN: %s'%(src,tgt,fln))
        for pop_id in [tgt,src]:
            if not pop_id in pop_ids:
                p0 = Population(id=pop_id, size=1, component='iaf', properties={'color':'%s %s %s'%(random.random(),random.random(),random.random())})

                net.populations.append(p0)
                pop_ids.append(pop_id)


        ################################################################################
        ###   Add a projection

        if fln>0.0:
            net.projections.append(Projection(id='proj_%s_%s'%(src,tgt),
                                              presynaptic=src, 
                                              postsynaptic=tgt,
                                              synapse='ampa',
                                              weight=fln))
Exemplo n.º 26
0
def generate():

    dt = 0.025
    simtime = 1000

    ################################################################################
    ###   Build new network

    net = Network(id='McCPNet')
    net.notes = 'Example of simplified McCulloch-Pitts based Network'

    net.parameters = {'amp': 1.5, 'scale': 3}

    cell = Cell(id='mccp0', lems_source_file='McCPTest.xml')
    net.cells.append(cell)

    silentDL = Synapse(id='silentSyn_proj0', lems_source_file='McCPTest.xml')
    net.synapses.append(silentDL)
    rsDL = Synapse(id='rsDL', lems_source_file='McCPTest.xml')
    net.synapses.append(rsDL)

    r1 = RectangularRegion(id='region1',
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=100,
                           depth=1000)
    net.regions.append(r1)

    p0 = Population(id='McCPpop0',
                    size='1*scale',
                    component=cell.id,
                    properties={
                        'color': '.9 0.9 0',
                        'radius': 5
                    },
                    random_layout=RandomLayout(region=r1.id))
    net.populations.append(p0)

    p1 = Population(id='McCPpop1',
                    size='1*scale',
                    component=cell.id,
                    properties={
                        'color': '.9 0 0.9',
                        'radius': 5
                    },
                    random_layout=RandomLayout(region=r1.id))
    net.populations.append(p1)

    net.projections.append(
        Projection(id='proj0',
                   presynaptic=p0.id,
                   postsynaptic=p1.id,
                   synapse=rsDL.id,
                   pre_synapse=silentDL.id,
                   type='continuousProjection',
                   weight='random()',
                   random_connectivity=RandomConnectivity(probability=0.6)))
    '''
                                      
    
    net.synapses.append(Synapse(id='ampa', 
                                pynn_receptor_type='excitatory', 
                                pynn_synapse_type='curr_alpha', 
                                parameters={'tau_syn':0.1}))
                                
    
    net.projections.append(Projection(id='proj1',
                                      presynaptic=pEpoisson.id, 
                                      postsynaptic=pLNP.id,
                                      synapse='ampa',
                                      delay=0,
                                      weight='in_weight',
                                      random_connectivity=RandomConnectivity(probability=0.7)))'''

    input_source0 = InputSource(id='sg0', neuroml2_source_file='inputs.nml')
    net.input_sources.append(input_source0)
    input_source1 = InputSource(id='sg1', neuroml2_source_file='inputs.nml')
    net.input_sources.append(input_source1)

    for pop in [p0.id]:
        net.inputs.append(
            Input(id='stim0_%s' % pop,
                  input_source=input_source0.id,
                  population=pop,
                  percentage=60))

        net.inputs.append(
            Input(id='stim1_%s' % pop,
                  input_source=input_source1.id,
                  population=pop,
                  percentage=60))

    #print(net)
    #print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='Sim%s' % net.id,
                     network=new_file,
                     duration=simtime,
                     dt=dt,
                     seed=123,
                     recordVariables={
                         'R': {
                             'all': '*'
                         },
                         'ISyn': {
                             'all': '*'
                         }
                     })

    sim.to_json_file()

    return sim, net
Exemplo n.º 27
0
                               'stop': 'input_del+input_dur'
                           })
net.input_sources.append(input_source)

r1 = RectangularRegion(id='region1',
                       x=0,
                       y=0,
                       z=0,
                       width=1000,
                       height=100,
                       depth=1000)
net.regions.append(r1)

p0 = Population(id='pop0',
                size=2,
                component=cell.id,
                properties={'color': '1 0 0'},
                random_layout=RandomLayout(region=r1.id))
net.populations.append(p0)
'''
p1 = Population(id='pop1', size=2, component=cell2.id, properties={'color':'0 1 0'},random_layout = RandomLayout(region=r1.id))
p2 = Population(id='pop2', size=1, component=cell2.id, properties={'color':'0 0 1'},random_layout = RandomLayout(region=r1.id))

net.populations.append(p1)
net.populations.append(p2)'''
'''
net.synapses.append(Synapse(id='ampaSyn', 
                            pynn_receptor_type='excitatory', 
                            pynn_synapse_type='cond_alpha', 
                            parameters={'e_rev':-10, 'tau_syn':2}))
net.synapses.append(Synapse(id='gabaSyn', 
Exemplo n.º 28
0
                               'stop': 800.
                           })
net.input_sources.append(input_source)

r1 = RectangularRegion(id='region1',
                       x=0,
                       y=0,
                       z=0,
                       width=1000,
                       height=100,
                       depth=1000)
net.regions.append(r1)

p0 = Population(id='pop0',
                size=2,
                component=cell.id,
                properties={'color': '1 0 0'},
                random_layout=RandomLayout(region=r1.id))
p1 = Population(id='pop1',
                size=2,
                component=cell2.id,
                properties={'color': '0 1 0'},
                random_layout=RandomLayout(region=r1.id))
p2 = Population(id='pop2',
                size=1,
                component=cell2.id,
                properties={'color': '0 0 1'},
                random_layout=RandomLayout(region=r1.id))

net.populations.append(p0)
net.populations.append(p1)
Exemplo n.º 29
0
net.cells.append(cellI)

######################### Spatial parameters for network ######################
r1 = RectangularRegion(id='region1',
                       x=0,
                       y=0,
                       z=0,
                       width=1000,
                       height=100,
                       depth=1000)
net.regions.append(r1)

############################# Populations #####################################
pE = Population(id='popE',
                size='int(1600*scale)',
                component=cellE.id,
                properties={'color': '.9 0 0'},
                random_layout=RandomLayout(region=r1.id))
pI = Population(id='popI',
                size='int(400*scale)',
                component=cellI.id,
                properties={'color': '0 0 .9'},
                random_layout=RandomLayout(region=r1.id))

### Append populations to network
net.populations.append(pE)
net.populations.append(pI)

############################### Inputs (Noise) ################################
# Noise on excitatory neurons
stdNoiseE = (sigmaV / R) * (tauE_m**0.5) / (dt**0.5)
Exemplo n.º 30
0
    [8, 48, 107],  # dark-blue
    [228, 26, 28],  # red
    [152, 78, 163],  # purple
    [77, 175, 74]
]

color_str = {}
for i in range(len(colors)):
    color_str[i] = ''
    for c in colors[i]:
        color_str[i] += '%s ' % (c / 255.)
    color_str[i] = color_str[i][:-1]

pE = Population(id='Exc',
                size=1,
                component=cell.id,
                properties={'color': color_str[0]},
                random_layout=RandomLayout(region=r1.id))
pPV = Population(id='PV',
                 size=1,
                 component=cell.id,
                 properties={'color': color_str[1]},
                 random_layout=RandomLayout(region=r1.id))
pSST = Population(id='SST',
                  size=1,
                  component=cell.id,
                  properties={'color': color_str[2]},
                  random_layout=RandomLayout(region=r1.id))
pVIP = Population(id='VIP',
                  size=1,
                  component=cell.id,