Exemplo n.º 1
0
def create_plot_shape(rotation, view):

    h.load_file("../NEURON_color_maps/TColorMap.hoc")
    h.load_file("movierun.hoc")

    ps = h.PlotShape()
    ps.exec_menu("View = plot")
    ps.variable("v")
    cm1 = h.TColorMap("../NEURON_color_maps/jet.cm")

    cm1.set_color_map(ps, -90, -10)
    h.fast_flush_list.append(ps)
    ps.exec_menu("Shape Plot")
    ps.exec_menu("Show Diam")

    ps.exec_menu("Variable Scale")
    try:
        ps.rotate(rotation[0], rotation[1], rotation[2], rotation[3],
                  rotation[4], rotation[5])

        ps.view(view[0], view[1], view[2], view[3], view[4], view[5], view[6],
                view[7])
    except:
        import pdb
        pdb.set_trace()
    ps.exec_menu("View Box")
Exemplo n.º 2
0
def get_shape_plot(variable, min_val=-70, max_val=40):
    ps = h.PlotShape(True)
    ps.variable(variable)
    ps.scale(min_val, max_val)
    ps.show(0)
    h.fast_flush_list.append(ps)
    ps.exec_menu('Shape Plot')
    return ps
Exemplo n.º 3
0
def make_shape_plot(variable: str = None, min_val=-70, max_val=40):
    """
    Create a shape plot in NEURON GUI
    :param variable:
        variable name to show on the neural shape. By default (None) it will show voltage
    :param min_val:
        min value of variable specified
    :param max_val:
        max valie of the variable specified
    :return:
        HOC's plot shape object
    """
    ps = h.PlotShape(True)
    if variable:
        ps.variable(variable)
        ps.scale(min_val, max_val)
    ps.show(0)
    h.fast_flush_list.append(ps)
    ps.exec_menu('Shape Plot')
    return ps
Exemplo n.º 4
0
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 25 14:12:00 2016

@author: Radu
"""

from neuron import h, gui
from Ia_LFPy import Ia

bla = Ia(n_nodes=43)
shape_window = h.PlotShape()
Exemplo n.º 5
0
def show_geometry(obj):
    sections = obj.all
    ps = h.PlotShape(sections)
    ps.exec_menu('Shape Plot')
 def show(self):
     """
         This method allows to view the Ring network.
     """
     graph = h.PlotShape()
     graph.exec_menu('Show Diam')
Exemplo n.º 7
0
def show_cell_geometry():
    """Shows the 3D cell morphology"""
    h.define_shape()
    shape_window = h.PlotShape()
    shape_window.exec_menu('Show Diam')
Exemplo n.º 8
0
# record
v = h.Vector().record(soma(0.5)._ref_v)  # Membrane potential vector
t = h.Vector().record(h._ref_t)  # Time stamp vector

# run
h.load_file('stdrun.hoc')
#h.fcurrent()                                       # Make all assigned variables (currents, conductances, etc) consistent with the values of the states. Useful in combination with finitialize().
h.finitialize(-64.97 * mV)
h.continuerun(300 * ms)

# plot graph
import matplotlib.pyplot as plt

plt.figure()
plt.plot(t, v)
plt.xlabel('t (ms)')
plt.ylabel('v (mV)')
#plt.show()

# plot shape
#plt.figure()
h.PlotShape(False).plot(plt)
#ps = h.PlotShape(True)

# show plots
#ps.show()
plt.show()

#input("Press Enter to continue...")
Exemplo n.º 9
0
#h('objref cell')
#h('cell = new CellSwc("./SWC/070224_SN-23-R.swc")')
#h('forall insert hh')
#h('forall insert k_ion')
#h('forall insert na_ion')

cell = h.CellSwc("./SWC/070224_SN-23-R.swc")

for sec in h.allsec():
    sec.insert('hh')
    for seg in chain(sec):
        seg.hh.gnabar = 0.0001
        seg.hh.gkbar = 0.01

sh = h.PlotShape(1)
sh.scale(0, 0)
sh.size(-140, 140, -140, 140)
sh.exec_menu("Shape Plot")

STIM_POINT = 187
STOPTIME = 8000
TIMESTEP = 0.025
LENGTH = 0.5
AMPLITUDE = 15
FREQUENCY = 300
L_RATIO = 2.0  # ratio of length (pre+post)/pre
A_RATIO = 0.3  # ratio of amplitude
POLAR_T = 0.0

volt_time = h.Vector()
Exemplo n.º 10
0
#topology
dend.connect(soma(1))
h.psection(sec=dend)
h.topology()

#geometry
## soma as a square cylinder such that diam = h
## radius = 500 micron
soma.L = soma.diam = 12.6157
dend.L = 200
dend.diam = 1
print("Surface area of soma = {}".format(soma(0.5).area()))

#plot shape
shape_window = h.PlotShape()  #by default, no diam is shown
shape_window.exec_menu('Show Diam')

#biophysics
for sec in h.allsec():  #iterate over all sections
    sec.Ra = 100  ## axial resistance in Ohm*cm
    sec.cm = 1  ## membrane capacitance in microFarad/cm2

soma.insert('hh')  #insert active Hodgkin-Huxley current in the soma
for seg in soma:
    seg.hh.gnabar = 0.12  ## sodium conductance in S/cm2
    seg.hh.gkbar = 0.036  # potassium conductance in S/cm2
    seg.hh.gl = 0.0003  # leak conductance in S/cm2
    seg.hh.el = -54.3  # reversal potential in mV

dend.insert('pas')
Exemplo n.º 11
0
conf = bionet.Config.from_json(config_file, validate=True)
conf.build_env()

graph = bionet.BioNetwork.from_config(conf)
sim = bionet.BioSimulator.from_config(conf, network=graph)

cells = graph.get_local_cells()

cell = cells[list(cells.keys())[0]]

psoma = cell.morphology.psoma

import matplotlib.pyplot as plt

ps = h.PlotShape(False)
ax = ps.plot(plt)
#import pdb; pdb.set_trace()
for con in cell._connections:
    #print(con._connector.postseg())
    #print(p.mark)
    #import pdb; pdb.set_trace()
    ax.mark(con._connector.postseg())

import pickle
f = open('groups.pkl', 'rb')
groups = pickle.load(f)
f.close()

from clustering import *
    cell.add_sec(name="neck", diam=0.5, l=0.5, nseg=50)
    cell.add_sec(name="dend", diam=0.5, l=5, nseg=100)
    cell.connect(fr='head', to='neck')
    cell.connect(fr='neck', to='dend', to_loc=0.5)
    cell.add_rxd()

    # init
    h.finitialize(-65 * mV)
    #TODO how to check if mM concentration diffuse rapidly or there is a "wall" on dendrite
    head_last = cell.secs['head'].nseg + cell.secs['neck'].nseg + cell.secs[
        'dend'].nseg - 1
    cell.ca.nodes[head_last].concentration = 0.5
    h.cvode.re_init()

    # plot shape
    ps = h.PlotShape(True)
    ps.variable('cai')
    ps.scale(0, 0.01)
    ps.show(0)
    h.fast_flush_list.append(ps)
    ps.exec_menu('Shape Plot')
    #h.PlotShape(False).plot(plt)

    # run
    sleep = 3
    print("sleep before run for: %s seconds", sleep)
    time.sleep(sleep)
    before = time.time()
    const_delay = DELAY / 1000  # in seconds
    for i in np.arange(0, RUNTIME, STEPSIZE):
        h.continuerun(i * ms)
Exemplo n.º 13
0
        if tar[:4] == 'dend':
            h.dend[int(tar[5:-1])](.5).v = 35
        elif tar[:4] == 'soma':
            soma_col = 'cyan'
        elif tar[:4] == 'axon':
            h.axon[int(tar[5:-1])](.5).v = 35

# visualisation ==========

# plots dendrites
'''
sections = h.SectionList([sec for sec in h.allsec() if 'dend' in str(sec)])
ps = h.PlotShape(sections,False).plot(plt)
ps._do_plot(0,1,h.dend,'v',cmap=vis_cmap)
'''
ps = h.PlotShape(h.SectionList(), False).plot(plt)
ps._do_plot(0, 1, h.allsec(), 'v', cmap=vis_cmap)

# Make sphere to mimic soma
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
x = 12 * np.outer(np.cos(u), np.sin(v))
y = 12 * np.outer(np.sin(u), np.sin(v))
z = 12 * np.outer(np.ones(np.size(u)), np.cos(v))
ps.plot_surface(x, y + 5, z + 10, color=soma_col)
ps.plot_surface(x, y + 5, z + 14, color=soma_col)
ps.plot_surface(x, y + 5, z + 17, color=soma_col)

# removes plot background
ps.xaxis.pane.fill = False
ps.yaxis.pane.fill = False
Exemplo n.º 14
0
conf = bionet.Config.from_json(config_file, validate=True)
conf.build_env()

graph = bionet.BioNetwork.from_config(conf)
sim = bionet.BioSimulator.from_config(conf, network=graph)

dic = {}
dic["high"] = {"dist": [], "Ih": [], "LVAst": [], "HVA": [], "diam": []}
dic["low"] = {"dist": [], "Ih": [], "LVAst": [], "HVA": [], "diam": []}

#segs = list(graph.get_local_cells().values())[0]._morph.seg_prop
#import pdb; pdb.set_trace()
cell = list(graph.get_local_cells().values())[0]
hobj = cell.hobj
import matplotlib.pyplot as plt
ps = h.PlotShape(False)  # False tells h.PlotShape not to use NEURON's gui
h.distance(sec=cell.hobj.soma[0])
diams1 = []
diams2 = []
for sec in hobj.all:
    fullsecname = sec.name()
    sec_type = fullsecname.split(".")[1][:4]
    sec_id = int(fullsecname.split("[")[-1].split("]")[0])
    #sec.v = np.random.random(1)[0]*1
    #print(sec.v)

    for seg in sec:
        #import pdb; pdb.set_trace()
        dist = h.distance(seg)
        if sec_type == "soma":  #light blue
            seg.v = -20
Exemplo n.º 15
0
#%%

h.load_file(biophysicalModelFilename)
h.load_file(biophysicalModelTemplateFilename)
L5PC = h.L5PCtemplate(morphologyFilename)

#%% set dendritic VDCC g=0
##secs = h.allsec
#for sec in h.allsec():
#    if hasattr(sec, 'gCa_HVAbar_Ca_HVA'):
#        sec.gCa_HVAbar_Ca_HVA = 0

#%% inspect the created shape

shapeWindow = h.PlotShape()
shapeWindow.exec_menu('Show Diam')

#%% helper functions


def Add_NMDA_SingleSynapticEventToSegment(segment, activationTime,
                                          synapseWeight, exc_inh):

    #    synapse = h.ProbAMPANMDA2(segment)
    #    synapse = h.ProbAMPANMDA_EMS(segLoc,sec=section)
    if exc_inh == 0:  # inhibitory
        synapse = h.ProbGABAAB_EMS(segment)  #GABAA/B
        synapse.tau_r_GABAA = 0.2
        synapse.tau_d_GABAA = 8
        synapse.tau_r_GABAB = 3.5
Exemplo n.º 16
0
print("baba")


def set_plotshape_colormap(plotshape, cmap='jet'):
    import matplotlib.cm
    s = matplotlib.cm.ScalarMappable(cmap=cmap)
    cmap = s.get_cmap()
    s.set_clim(0, cmap.N)
    rs, gs, bs = itertools.islice(zip(*s.to_rgba(list(range(cmap.N)))), 0, 3)
    plotshape.colormap(cmap.N)
    for i, r, g, b in zip(list(range(cmap.N)), rs, gs, bs):
        plotshape.colormap(i, r * 255, g * 255, b * 255)
    # call s.scale(lo, hi) to replot the legend


s = h.PlotShape()

s.exec_menu('Shape Plot')
set_plotshape_colormap(s)

# show the diameters
s.show(0)

# cytoplasmic, er volume fractions
fc, fe = 0.83, 0.17

# parameters
caDiff = 0.016
#caDiff =0
ip3Diff = 0.283
#ip3Diff = 0
Exemplo n.º 17
0
 def show_architecture(self):
     shape_window = h.PlotShape()
     shape_window.exec_menu("Show Diam")