def runSimulation(young_chem1_con1, young_elec1_con1, numNeurons, fileIndex, simTime, inhibInd, age, delay, stimInterval, con): """ This defintion will run the simulation. """ print 'Run simulation!!' # Load file to make model regular spiking excitory cells. h.load_file ("sPY_template") # Load file to make model fast spiking inhibitory cells. h.load_file ("sIN_template") #Create neurons in the networks. numSegs = 3 Neurons = [] for i in range(0, numNeurons): if i < inhibInd: neuron = h.sPY() Neurons.append(neuron) else: neuron = h.sIN() Neurons.append(neuron) #Import connectivity between neurons. gapsYoung = constructConnections1( young_elec1_con1, numNeurons, Neurons) synYoung,ncYoung = constructConnections2( young_chem1_con1, numNeurons, Neurons, inhibInd, delay ) #Create vectors for recording potentials, currents, etc in the neural network during the simulation. vec = recordData( numNeurons, Neurons ) #Stimulate system with random noise. stims = [] for i in range(0,numNeurons): stims.append(makeStimulus(Neurons[i],simTime,int(stimInterval))) #Run the simulation. h.load_file("stdrun.hoc") h.init() h.tstop = simTime h.run() #Write results. file = open(path + 'spikes' + str(con) + '_' + str(age) + '_' + str(fileIndex) + '_' + str(stimInterval) + '.txt',"wb") print "Writing results to..." print file for j in range(0,numNeurons): canFire = 1 var = str(j+1) for i in range(0,len(vec ['t '])): if (vec[var][i] > 0) & (canFire == 1): file.write(str(j+1)+"\n") file.write(str(vec['t '][i])+"\n") canFire = 0 if (vec[var][i] < 0): canFire = 1 file.close()
def runSimulation(young_chem1_con1, young_elec1_con1, numNeurons, fileIndex, simTime, inhibInd, age, delay, stimInterval, con, strength): """ This defintion will run the simulation. """ print 'Run simulation!!' # Load file to make model regular spiking excitory cells. h.load_file ("sPY_template") # Load file to make model fast spiking inhibitory cells. h.load_file ("sIN_template") #Create neurons in the networks. numSegs = 3 Neurons = [] for i in range(0, numNeurons): if i < inhibInd: neuron = h.sPY() Neurons.append(neuron) else: neuron = h.sIN() Neurons.append(neuron) #Import connectivity between neurons. #gapsYoung = constructConnections1( young_elec1_con1, numNeurons, Neurons) synYoung,ncYoung = constructConnections2( young_chem1_con1, numNeurons, Neurons, inhibInd, delay, strength ) #Create vectors for recording potentials, currents, etc in the neural network during the simulation. vec = recordData( numNeurons, Neurons ) #Stimulate system with random noise. stims = [] for i in range(0,numNeurons): stims.append(makeStimulus(Neurons[i],simTime,int(stimInterval))) #Run the simulation. h.load_file("stdrun.hoc") h.init() h.tstop = simTime h.run()
h.load_file("sPY.tem") #h.xopen("sPY.tem") # read geometry file PY = [] # create PY cells PYVtrace = [] for i in range(ncorticalcells): cell = h.sPY() #cell.soma.v = randvolt.repick() PY.append(cell) h.load_file("sIN.tem") #h.xopen("sIN.tem") # read geometry file IN = [] # create IN cells INVtrace = [] for i in range(ncorticalcells): cell = h.sIN() #cell.soma.v = randvolt.repick() IN.append(cell) h.load_file("TC.tem") #h.xopen("TC.tem") TC = [] # create TC cells TCVtrace = [] for i in range(nthalamiccells): cell = h.sTC() #cell.soma.v = randvolt.repick() TC.append(cell) h.load_file("RE.tem") #h.xopen("RE.tem") RE = [] # create RE cells
from itertools import chain from neuron import h import random import os import time import sys import numpy from pylab import * # Try to make the excitory cell. h.load_file("sPY_template") exc = h.sPY() # Try to make the excitory cell. h.load_file("sIN_template") inh = h.sIN() # Stimulate the exc cell. stimNc = h.NetStim() stimNc.noise = 1 stimNc.start = 150 stimNc.number = 1 stimNc.interval = 1 syn = h.ExpSyn(0.5, sec=exc.soma[0]) nc = h.NetCon(stimNc, syn) nc.weight[0] = 5 nc.record() """ # Stimulate the exc cell. stimNcI = h.NetStim() stimNcI.noise = 1