Exemplo n.º 1
0
    # make VecStim
    vs_cell = VecStimCell("vecstim_cell")
    stim2 = vs_cell.make_vecstim(np.array([WARMUP+50]))

    # make synapses with spines
    syns_4p, heads = cell.add_synapses_with_spine(source=None, secs=cell.secs, number=100, netcon_weight=WEIGHT,
                                                  mod_name="Syn4PAChDa", delay=1, **cell.params_4p_syn)
    for s, h in zip(syns_4p, heads):
        syn_ach = cell.add_synapse(source=stim1, mod_name="SynACh", seg=h(1.0), netcon_weight=0.1, delay=1)
        syn_da = cell.add_synapse(source=stim2, mod_name="SynDa", seg=h(1.0), netcon_weight=0.1, delay=1)
        cell.set_synaptic_pointers(s, syn_ach, syn_da)

    # add mechanisms
    cell.make_default_mechanisms()
    cell.make_apical_mechanisms(sections='head neck')

    # make plots
    rec_4psyn = Record(cell.filter_point_processes(mod_name="Syn4PAChDa", name="head[0]"), variables="w")

    # init and run
    sim = Simulation(init_v=-70, warmup=WARMUP)
    sim.run(runtime=200)

    # Event delivery
    syns_4p[0].make_event(10)

    sim.run(runtime=200)

    # plot
    rec_4psyn.plot()
Exemplo n.º 2
0
from neuronpp.utils.record import Record
from neuronpp.utils.simulation import Simulation

path = os.path.dirname(os.path.abspath(__file__))

if __name__ == '__main__':
    # Prepare cell
    filepath = os.path.join(path, "..",
                            "commons/mods/sigma3syn")
    cell = Cell("cell", compile_paths=filepath)
    soma = cell.add_sec("soma", diam=20, l=20, nseg=10)
    cell.insert('pas')
    cell.insert('hh')

    w = 0.003  # LTP
    #w = 0.0022  # LTD
    syn = cell.add_synapse(source=None, netcon_weight=w, seg=soma(0.5), mod_name="ExcSigma3Exp2Syn")

    # prepare plots and spike detector
    rec_v = Record(soma(0.5), variables="v")
    rec_w = Record(syn, variables="w")

    # run
    sim = Simulation(init_v=-68, warmup=5)
    syn.make_event(5)
    sim.run(runtime=50)

    # plot
    rec_w.plot()
    rec_v.plot()
Exemplo n.º 3
0
    soma = cell.filter_secs("soma")

    # Netstim to synapse
    stim = NetStimCell("stim").add_netstim(start=WARMUP,
                                           number=REPS,
                                           interval=interval)
    syn = cell.add_synapse(source=stim,
                           netcon_weight=WEIGHT,
                           mod_name="Syn4P",
                           delay=1,
                           seg=cell.filter_secs('apic[1]')(0.5))

    # IClamp to soma
    iclamp = IClamp(segment=cell.filter_secs("soma")(0.5))
    for i in range(REPS):
        start_t = WARMUP + delta_t + i * interval
        iclamp.stim(delay=start_t, dur=DUR, amp=AMP)

    # Record
    rec = Record([s(0.5) for s in cell.filter_secs("apic[1],apic[50]")])

    # Run
    sim = Simulation(init_v=-70, warmup=WARMUP, dt=DT)
    total_time = REPS * interval + COOL_DOWN
    sim.run(total_time)

    # Plot
    rec.plot(position="merge")
    plt.show()
Exemplo n.º 4
0
# 2) Recommended synapse
syn1 = cell.add_synapse(source=stim,
                        seg=soma(0.5),
                        netcon_weight=0.01,
                        mod_name="Syn4P",
                        delay=1)

# 3) Event synapse
syn2 = cell.add_synapse(source=None,
                        seg=soma(0.5),
                        netcon_weight=0.01,
                        mod_name="Syn4P",
                        delay=1)

# prepare plots
rec_v = Record(soma(0.5), variables="v")

# run
sim = Simulation(init_v=-55, warmup=20)

# Making external events to the synapse
syn2.make_event(10)
syn2.make_event(20)
syn2.make_event(30)
syn2.make_event(40)

# Example of online update of the graph, however sim.run(runtime=1000) can be call in a single run
for i in range(1000):
    sim.run(runtime=1)
    rec_v.plot(animate=True)
Exemplo n.º 5
0
        cell.group_synapses(tag="input_syn", synapses=[s, syn_ach, syn_da])

    # add mechanisms
    cell.make_default_mechanisms()
    cell.make_apical_mechanisms(sections='dend head neck')

    soma = cell.filter_secs("soma")

    syns = cell.filter_synaptic_group()
    syn4p = syns[0]['Syn4PAChDa']
    synach = syns[0]['SynACh']

    rec_syn = Record(syn4p, variables="w stdp_ach ach_stdp ACh ACh_w")
    rec_soma = Record(soma(0.5), variables="v")

    sim = Simulation(init_v=-80, warmup=WARMUP, warmup_on_create=True)

    event = 0
    inter = 5
    for i in range(10):
        for syn in syns:
            syn['Syn4PAChDa'][0].make_event(event)
            syn['SynACh'][0].make_event(event)
            event += inter

    sim.run(runtime=150)

    # plot
    rec_soma.plot()
    rec_syn.plot()
Exemplo n.º 6
0
                     spine_number=10,
                     spine_secs_names="apic",
                     spine_seed=13)

soma = cell.filter_secs("soma")
syns = cell.filter_complex_synapses(tag="combe")

# Prepare STDP protocol
stdp = Experiment()
stdp.make_protocol("3xEPSP[int=10] 3xAP[int=10,dur=3,amp=1.6]",
                   start=1,
                   isi=10,
                   epsp_synapse=syns[0],
                   i_clamp_section=soma)

# Prepare plots
v_soma_rec = Record([soma(0.5), syns[0].parent], variables='v')
cai_head0_rec = Record(syns[0].parent, variables='cai')

# Run
sim = Simulation(init_v=-70,
                 warmup=20,
                 with_neuron_gui=True,
                 constant_timestep=False)
sim.run(runtime=100, debug=True)

# Plot
cai_head0_rec.plot()
v_soma_rec.plot()
v_soma_rec.to_csv("vrec.csv")
Exemplo n.º 7
0
cell.insert("hh")

soma = cell.filter_secs("soma")
dend = cell.filter_secs("apic[10]")
syn = cell.add_synapse(source=None, mod_name="ExpSyn", seg=dend(0.5))

# Prepare EPSP and AP (IClamp) protocols
experiment = Experiment(iti=40)
experiment.add_epsp(num=3, synapse=syn, init=20, interval=20, weight=0.02)
experiment.add_iclamp(num=3,
                      segment=soma(0.5),
                      init=60,
                      interval=20,
                      dur=3,
                      amp=1.6)
experiment.build()

# Prepare plots
rec = Record([soma(0.5), dend(0.5)], variables='v')

# Run
sim = Simulation(init_v=-70,
                 warmup=20,
                 with_neuron_gui=False,
                 constant_timestep=True)
sim.run(runtime=100)

rec.plot()
v_soma = rec.as_numpy('v', segment_name=soma(.5).name)
v_dend = rec.as_numpy('v', segment_name=dend(.5).name)