Exemplo n.º 1
0
def trade(mega_config):
    '''
    One function to rule them all
    '''
    from neuronquant.gears.engine import Simulation
    from neuronquant.utils.logger import get_nestedlog

    # General simulation behavior
    #NOTE Portfolio server setup in Setup() object,
    #if needed, create it manually here
    configuration = mega_config['configuration']
    strategie = mega_config['strategie']

    # Remote: ZMQ based messaging, route logs on the network
    # (catched by server's broker)
    log_setup = get_nestedlog(level=configuration['loglevel'], file=configuration['logfile'])
    with log_setup.applicationbound():
        # Backtest or live engine
        engine = Simulation(configuration)

        # Setup quotes data and financial context (location, market, ...)
        # simulation from user parameters Wrap _configure_data() and
        # _configure_context() you can use directly for better understanding
        data, trading_context = engine.configure()

        # See neuronquant/gears/engine.py for details of results which is an
        # analyzes object
        analyzes = engine.run(data, configuration, strategie, trading_context)
        assert analyzes
Exemplo n.º 2
0
def trade(mega_config):
    '''
    One function to rule them all
    '''
    from neuronquant.gears.engine import Simulation
    from neuronquant.utils.logger import get_nestedlog

    # General simulation behavior
    #NOTE Portfolio server setup in Setup() object,
    #if needed, create it manually here
    configuration = mega_config['configuration']
    strategie = mega_config['strategie']

    # Remote: ZMQ based messaging, route logs on the network
    # (catched by server's broker)
    log_setup = get_nestedlog(level=configuration['loglevel'],
                              file=configuration['logfile'])
    with log_setup.applicationbound():
        # Backtest or live engine
        engine = Simulation(configuration)

        # Setup quotes data and financial context (location, market, ...)
        # simulation from user parameters Wrap _configure_data() and
        # _configure_context() you can use directly for better understanding
        data, trading_context = engine.configure()

        # See neuronquant/gears/engine.py for details of results which is an
        # analyzes object
        analyzes = engine.run(data, configuration, strategie, trading_context)
        assert analyzes
Exemplo n.º 3
0
    def __init__(self):
        # General backtest behavior configuration
        self.configuration = {'algorithm'   : 'DualMA',
                         'frequency'       : 'daily',
                         'manager'     : 'Constant',
                         'database'    : 'test',
                         'tickers'     : ['google', 'apple'],
                         'start'       : pytz.utc.localize(datetime(2008, 1, 11)),
                         'end'         : pytz.utc.localize(datetime(2010, 7, 3)),
                         'live'        : False,
                         'port'        : '5570',
                         'cash'        : 100000,
                         'exchange'    : 'nasdaq',
                         'remote'      : False}

        # Object use to run zipline backtest
        self.engine = Simulation()

        # Configure and return data used during backtest, and the TradingEnvironement
        self.data, self.context = self.engine.configure(self.configuration)
Exemplo n.º 4
0
    def __init__(self):
        # General backtest behavior configuration
        self.configuration = {'algorithm'   : 'DualMA',
                         'frequency'       : 'daily',
                         'manager'     : 'Constant',
                         'database'    : 'test',
                         'tickers'     : ['google', 'apple'],
                         'start'       : pytz.utc.localize(datetime(2008, 1, 11)),
                         'end'         : pytz.utc.localize(datetime(2010, 7, 3)),
                         'live'        : False,
                         'port'        : '5570',
                         'cash'        : 100000,
                         'exchange'    : 'nasdaq',
                         'remote'      : False}

        # Object use to run zipline backtest
        self.engine = Simulation()

        # Configure and return data used during backtest, and the TradingEnvironement
        self.data, self.context = self.engine.configure(self.configuration)
Exemplo n.º 5
0
class Metric(object):
    ''' Evaluate error of a solution in optimization '''
    def __init__(self):
        # General backtest behavior configuration
        self.configuration = {
            'algorithm': 'DualMA',
            'frequency': 'daily',
            'manager': 'Constant',
            'database': 'test',
            'tickers': ['google', 'apple'],
            'start': pytz.utc.localize(datetime(2008, 1, 11)),
            'end': pytz.utc.localize(datetime(2010, 7, 3)),
            'live': False,
            'port': '5570',
            'cash': 100000,
            'exchange': 'nasdaq',
            'remote': False
        }

        # Object use to run zipline backtest
        self.engine = Simulation()

        # Configure and return data used during backtest, and the TradingEnvironement
        self.data, self.context = self.engine.configure(self.configuration)

    def fitness(self, genes):
        '''
        Cost function in the optimization process
        _________________________________________
        Parameters
            genes: list
                Parameters to optimize
        _________________________________________
        Return
            score: float
                Error of the cost function ran with this solution
                So the algo tries to minimize it (i.e. 0 is the best score)
        '''

        # No evoluation in manager (Constant) configuration
        # We try here to optimize the algorithm parameters
        strategie = {
            'manager': {
                'name': 'Xavier Bruhiere',
                'load_backup': 0,
                'max_weight': 0.4,
                'buy_amount': 200,
                'sell_amount': 100,
                'connected': 0
            },
            'algorithm': {
                'long_window': int(genes[0]),
                'ma_rate': float(genes[1] / 10.0),
                'threshold': genes[2]
            }
        }
        try:
            # Run backtest with all configuration dictionnaries
            analyzes = self.engine.run(self.data, self.configuration,
                                       strategie, self.context)

            # Get back summary performance dictionnary
            risk_metrics = analyzes.overall_metrics()
        except:
            import ipdb
            ipdb.set_trace()
            log.error('Exception caught while running cost function')
            # Return worst result possible
            return 1

        return self.evaluate(risk_metrics)

    def evaluate(self, risks):
        '''
        Define score from raw cost function results
        '''
        score = [
            risks['Returns'], risks['Sharpe.Ratio'], risks['Max.Drawdown'],
            risks['Volatility']
        ]

        # Debug purpose
        if score[0]:
            log.notice(risks)

        # Compute score from cummulative returns,
        return 1 - score[0]
Exemplo n.º 6
0
class Metric(object):
    ''' Evaluate error of a solution in optimization '''
    def __init__(self):
        # General backtest behavior configuration
        self.configuration = {'algorithm'   : 'DualMA',
                         'frequency'       : 'daily',
                         'manager'     : 'Constant',
                         'database'    : 'test',
                         'tickers'     : ['google', 'apple'],
                         'start'       : pytz.utc.localize(datetime(2008, 1, 11)),
                         'end'         : pytz.utc.localize(datetime(2010, 7, 3)),
                         'live'        : False,
                         'port'        : '5570',
                         'cash'        : 100000,
                         'exchange'    : 'nasdaq',
                         'remote'      : False}

        # Object use to run zipline backtest
        self.engine = Simulation()

        # Configure and return data used during backtest, and the TradingEnvironement
        self.data, self.context = self.engine.configure(self.configuration)

    def fitness(self, genes):
        '''
        Cost function in the optimization process
        _________________________________________
        Parameters
            genes: list
                Parameters to optimize
        _________________________________________
        Return
            score: float
                Error of the cost function ran with this solution
                So the algo tries to minimize it (i.e. 0 is the best score)
        '''

        # No evoluation in manager (Constant) configuration
        # We try here to optimize the algorithm parameters
        strategie = {'manager': {'name': 'Xavier Bruhiere',
                                 'load_backup': 0,
                                 'max_weight': 0.4,
                                 'buy_amount': 200,
                                 'sell_amount': 100,
                                 'connected': 0},
                     'algorithm': {'long_window': int(genes[0]),
                                    'ma_rate': float(genes[1] / 10.0),
                                    'threshold': genes[2]}
                     }
        try:
            # Run backtest with all configuration dictionnaries
            analyzes = self.engine.run(self.data, self.configuration, strategie, self.context)

            # Get back summary performance dictionnary
            risk_metrics = analyzes.overall_metrics()
        except:
            import ipdb; ipdb.set_trace()
            log.error('Exception caught while running cost function')
            # Return worst result possible
            return 1

        return self.evaluate(risk_metrics)

    def evaluate(self, risks):
        '''
        Define score from raw cost function results
        '''
        score = [risks['Returns'], risks['Sharpe.Ratio'], risks['Max.Drawdown'], risks['Volatility']]

        # Debug purpose
        if score[0]:
            log.notice(risks)

        # Compute score from cummulative returns,
        return 1 - score[0]
Exemplo n.º 7
0
             for sophisticated multiple strategies strategy
                 - Available capital allocation
                 import ipdb; ipdb.set_trace()  # XXX BREAKPOINT
                 - Strategies repartition
                 - Use of each-other signals behavior
                 - Global monitoring and evaluation
        '''

        # Fill strategie and manager parameters
        # Localy, reading configuration file
        # Remotely, listening gor messages through zmq socket
        strategie = setup.get_strategie_configuration(remote=configuration['remote'])

        '''_________________________________________________________    Backtest    ____'''
        # Backtest or live engine
        engine = Simulation(configuration)

        # Setup quotes data and financial context (location, market, ...)
        # simulation from user parameters Wrap _configure_data() and
        # _configure_context() you can use directly for better understanding
        data, trading_context = engine.configure()

        # See neuronquant/gears/engine.py for details of results
        #which is an Analyzes object
        analyzes = engine.run(data, configuration, strategie, trading_context)

        if analyzes is None:
            log.error('** Backtest failed.')
            sys.exit(1)

        '''___________________________________________________________    Results   ____'''
Exemplo n.º 8
0
             for sophisticated multiple strategies strategy
                 - Available capital allocation
                 import ipdb; ipdb.set_trace()  # XXX BREAKPOINT
                 - Strategies repartition
                 - Use of each-other signals behavior
                 - Global monitoring and evaluation
        '''

        # Fill strategie and manager parameters
        # Localy, reading configuration file
        # Remotely, listening gor messages through zmq socket
        strategie = setup.get_strategie_configuration(
            remote=configuration['remote'])
        '''_________________________________________________________    Backtest    ____'''
        # Backtest or live engine
        engine = Simulation(configuration)

        # Setup quotes data and financial context (location, market, ...)
        # simulation from user parameters Wrap _configure_data() and
        # _configure_context() you can use directly for better understanding
        data, trading_context = engine.configure()

        # See neuronquant/gears/engine.py for details of results
        #which is an Analyzes object
        analyzes = engine.run(data, configuration, strategie, trading_context)

        if analyzes is None:
            log.error('** Backtest failed.')
            sys.exit(1)
        '''___________________________________________________________    Results   ____'''
        #analyzes.run_dashboard(portfolio=strategie['manager']['name'])
Exemplo n.º 9
0
    # Color_setup : Pretty print of errors, warning, and so on Remote_setup:
    # ZMQ based messaging, route logs on the network (catched by server's
    # broker)
    log_setup = (utils.remote_setup if configuration['remote'] else
                 utils.color_setup)
    with log_setup.applicationbound():

        # Fill algorithm and manager parameters
        # Localy, reading configuration file
        # Remotely, listening gor messages through zmq socket
        strategie = setup.get_strategie_configuration(remote=configuration['remote'])

        '''____________________________________________________________________________________    Backtest    ____'''
        # Backtest or live engine
        engine = Simulation()

        # Setup quotes data and financial context (location, market, ...)
        # simulation from user parameters Wrap _configure_data() and
        # _configure_context() you can use directly for better understanding
        data, context = engine.configure(configuration)

        # See neuronquant/calculus/engine.py for details of results which is an
        # analyzes object
        analyzes = engine.run(data, configuration, strategie, context)

        if analyzes is None:
            utils.log.error('** Backtest failed, exiting')
            sys.exit(1)

        '''_______________________________________________________________________________________    Results   ____'''