Exemplo n.º 1
0
def getOptims():
    linopt1 = linear(
        energy=0.95,
        unreweightedvariance=0.0,
        reweightedvariance=0.05,
        timestep=0.3,
        samples=12800,
        walkers=1,
        warmupsteps=10,
        blocks=100,
        steps=1,
        substeps=3,
        #gpu                  = True,
        # Disable nonlocalpp for GPU, i.e., nonlocalpp = False,
        nonlocalpp=True,
        maxweight=1e9,
        minmethod='OneShiftOnly',
        minwalkers=0.4,
        usebuffer=True,
        exp0=-2,
        bigchange=10.0,
        alloweddifference=6e-04,
        stepsize=0.05,
        nstabilizers=3,
    )
    optims = []
    optims.append(loop(max=5, qmc=linopt1))

    return optims
Exemplo n.º 2
0
def gamma_opt_input(p2q, system, init_jas=None):
    from nexus import loop, linear

    myid = p2q.identifier.replace('-p2q', '-opt')
    nscf_dir = os.path.basename(p2q.path)
    mypath = p2q.path.replace(nscf_dir, 'opt')

    linopt = obj(
        minmethod='OneShiftOnly',
        energy=0.95,
        reweightedvariance=0.05,
        unreweightedvariance=0.0,
        warmupsteps=40,
        blocks=128,
        substeps=3,
        timestep=0.8,
        samples=8192,
    )
    calcs = [loop(max=5, qmc=linear(**linopt))]

    myjas = init_jas
    if init_jas is None:
        myjas = [('J1', 'size', 8, 'cusp', 1), ('J2', 'size', 8)]
    # end if

    opt_inputs = obj(
        identifier=myid,
        path=mypath,
        input_type='basic',
        system=system,
        bconds='ppp',  # periodic in xyz directions
        calculations=calcs,
        twistnum=0,
        estimators=[],
        jastrows=myjas,
        pseudos=[],
        dependencies=[(p2q, 'orbitals')])
    return opt_inputs
Exemplo n.º 3
0
    det_format     = 'old',
    identifier     = 'opt',
    path           = 'opt',
    job            = job(cores=16,threads=16,app=qmcapp),
    input_type     = 'basic',
    spin_polarized = True,
    system         = dia,
    pseudos        = ['C.BFD.xml'],
    jastrows       = [('J1','bspline',8),('J2','bspline',8)],
    calculations   = [
        loop(max=4,
             qmc = linear(
                 minmethod   = 'OneShiftOnly',
                 minwalkers  = 0.5,
                 samples     = 5000,
                 walkers     = 1,
                 warmupsteps =  20,
                 blocks      =  25,
                 substeps    =   5,
                 timestep    =  .4,
                 ),
             ),
        ],
    dependencies = (conv,'orbitals'),
    )

qmc_ground = generate_qmcpack(
    det_format     = 'old',
    identifier     = 'vmc',
    path           = 'vmc_ground',
    job            = job(cores=16,threads=16,app=qmcapp),
    input_type     = 'basic',
Exemplo n.º 4
0
    system       = graphene,        # run graphene
    # input format selector   
    input_type   = 'basic',
    # qmcpack input parameters
    corrections  = [], 
    jastrows     = [('J1','bspline',8),   # 1 body bspline jastrow
                    ('J2','bspline',8)],  # 2 body bspline jastrow
    calculations = [
        loop(max = 6,                        # No. of loop iterations
             qmc = linear(                   # linearized optimization method
                energy               =  0.0, # cost function
                unreweightedvariance =  1.0, #   is all unreweighted variance
                reweightedvariance   =  0.0, #   no energy or r.w. var. 
                timestep             =  0.5, # vmc timestep (1/Ha)
                warmupsteps          =  100, # MC steps before data collected 
                samples              = 16000,# samples used for cost function 
                stepsbetweensamples  =   10, # steps between uncorr. samples
                blocks               =   10, # ignore this  
                minwalkers           =   0.1,#  and this
                bigchange            =  15.0,#  and this
                alloweddifference    =  1e-4 #  and this, for now
                )
             )        
        ],
    # workflow dependencies
    dependencies = (p2q_opt,'orbitals'),
    )

# nscf run to produce orbitals for final dmc
nscf = generate_pwscf(
    # nexus inputs
Exemplo n.º 5
0
         ('J2', 'bspline', 8, 10.0)
     ],
     calculations=[
         loop(max=12,
              qmc=linear(
                  energy=0.0,
                  unreweightedvariance=1.0,
                  reweightedvariance=0.0,
                  timestep=0.3,
                  samples=61440,
                  warmupsteps=50,
                  blocks=200,
                  substeps=1,
                  nonlocalpp=True,
                  usebuffer=True,
                  walkers=1,
                  minwalkers=0.5,
                  maxweight=1e9,
                  usedrift=False,
                  minmethod='quartic',
                  beta=0.025,
                  exp0=-16,
                  bigchange=15.0,
                  alloweddifference=1e-4,
                  stepsize=0.2,
                  stabilizerscale=1.0,
                  nstabilizers=3,
              ))
     ],
     dependencies=(p2q, 'orbitals'),
 )
Exemplo n.º 6
0
def mworkflow(shared_qe, params, sims):

    for i in params_defaults.keys():
        if i not in params:
            setattr(params, i, params_defaults[i])
        #end if
    #end if
    if params.j3:
        if params.code == 'gpu':
            print "GPU code and j3 not possible yet"
            exit()
        #end if
    #end if
    if params.excitation is not None:
        params.twistnum = 0
    ########################
    #DMC and VMC parameters#
    ########################
    samples = 25600  #25600
    vmcblocks = 100
    dmcblocks = 300
    dmceqblocks = 200
    dmcwalkers = 1024  # For cades it is multiplied by 2
    vmcdt = 0.3
    if params.vmc:
        vmcblocks = 9000
        vmcdt = 0.3
        dmcblocks = 1
        dmceqblocks = 1
    #end if
    #############################
    # Machine specific variables#
    #############################
    if params.machine == 'cades':
        minnodes = 1
        scf_nodes = 2
        scf_hours = 48
        p2q_nodes = scf_nodes
        p2q_hours = 1

        qeapp = 'pw.x -npool 4 '
        if params.dft_grid == (1, 1, 1):
            scf_nodes = 1
            qeapp = 'pw.x'
        #end if
        qe_presub = 'module purge; module load PE-intel/3.0; module load hdf5_parallel/1.10.3'

        opt_nodes = 4
        opt_hours = 12
        dmcnodespertwist = 0.5
        dmc_hours = 24
        qmc_threads = 18
        walkers = qmc_threads
        blocks = samples / (walkers * opt_nodes)
        params.code = 'cpu'
        qmcapp = ' qmcpack_cades_cpu_comp_SoA'
        qmc_presub = 'module purge; module load PE-intel'

        opt_job = Job(nodes=opt_nodes,
                      hours=opt_hours,
                      threads=qmc_threads,
                      app=qmcapp,
                      presub=qmc_presub)

    elif params.machine == 'titan' or params.machine == 'eos':
        minnodes = 1
        dmcwalkers *= 2
        scf_nodes = 8
        scf_hours = 2
        p2q_nodes = scf_nodes
        p2q_hours = 1

        qeapp = 'pw.x -npool 4 '
        qe_presub = ''

        if params.machine == 'eos':
            opt_nodes = 16
            opt_hours = 2
            qmc_threads = 16
            walkers = qmc_threads
            blocks = samples / (walkers * opt_nodes)

            params.code = 'cpu'
            qmcapp = '/ccs/home/kayahan/SOFTWARE/qmcpack/eos/qmcpack/qmcpack_eos_cpu_comp_SoA'
            qmc_presub = ''

            params.rundmc = False
        elif params.machine == 'titan':
            if params.code == 'cpu':
                dmcwalkers *= 2
                vmcblocks = 50
                opt_nodes = 16
                opt_hours = 2
                dmcnodespertwist = 32
                dmc_hours = 6
                qmc_threads = 16
                walkers = qmc_threads
                blocks = samples / (walkers * opt_nodes)

                qmcapp = '/ccs/home/kayahan/SOFTWARE/qmcpack/titan/qmcpack/qmcpack_titan_cpu_comp_SoA'
                qmc_presub = ''

                params.rundmc = True
            elif params.code == 'gpu':
                dmcwalkers *= 8
                opt_nodes = 4
                opt_hours = 4
                dmcnodespertwist = 8
                dmc_hours = 1.5
                qmc_threads = 16
                walkers = qmc_threads
                blocks = samples / (walkers * opt_nodes)
                qmcapp = '/ccs/home/kayahan/SOFTWARE/qmcpack/titan/qmcpack/qmcpack_titan_gpu_comp_SoA'
                qmc_presub = 'module load cudatoolkit'
            #end if
        #end if

        opt_job = Job(nodes=opt_nodes,
                      hours=opt_hours,
                      threads=qmc_threads,
                      app=qmcapp,
                      presub=qmc_presub)

    elif params.machine == 'cetus' or params.machine == 'mira':
        if params.machine == 'cetus':
            minnodes = 128
            opt_hours = 1
            dmc_hours = 1
        elif params.machine == 'mira':
            minnodes = 128
            dmc_hours = 1
            dmc_hours = 1
        #end if

        scf_nodes = 128
        scf_hours = 1
        p2q_nodes = 128
        p2q_hours = 1

        qeapp = 'pw.x'
        qe_presub = ''

        opt_nodes = 128.0
        opt_nodes = np.round(opt_nodes / minnodes) * minnodes
        dmcnodespertwist = 18
        qmc_threads = 16
        walkers = qmc_threads
        qmc_processes_per_node = 16
        blocks = samples / (walkers * opt_nodes)
        params.code = 'cpu'
        qmcapp = 'qmcpack'
        qmc_presub = ''
        opt_job = Job(nodes=opt_nodes,
                      hours=opt_hours,
                      threads=qmc_threads,
                      processes_per_node=qmc_processes_per_node,
                      app=qmcapp,
                      presub=qmc_presub)
    elif params.machine == 'summit':
        dmcwalkers *= 8
        minnodes = 1
        scf_nodes = 2
        scf_hours = 24
        p2q_nodes = 2
        p2q_hours = 1

        qeapp = 'pw.x -npool 4 '
        if params.dft_grid == (1, 1, 1):
            scf_nodes = 1
            qeapp = 'pw.x'
    #end if
        qe_presub = 'module purge; module load PE-intel/3.0'
        opt_nodes = 4
        opt_hours = 4
        dmcnodespertwist = 8
        dmc_hours = 6
        qmc_threads = 42
        walkers = qmc_threads
        blocks = samples / (walkers * opt_nodes)
        qmcapp = '/ccs/home/kayahan/SOFTWARE/qmcpack/summit/qmcpack/build_summit_comp/bin/qmcpack'
    else:
        print "Machine is not defined!"
        exit()
    #end if

    scf_job = Job(nodes=scf_nodes,
                  hours=scf_hours,
                  app=qeapp,
                  presub=qe_presub)
    p2q_job = Job(nodes=p2q_nodes,
                  hours=p2q_hours,
                  app='pw2qmcpack.x -npool 4 ',
                  presub=qe_presub)

    if params.big or params.qp:
        dmcblocks *= 4
        dmcnodespertwist *= 1
        dmc_hours *= 2
        dmcwalkers *= 2
    #end if
    shared_qe.wf_collect = False
    shared_qe.nosym = True
    shared_qe.job = scf_job
    shared_qe.pseudos = params.dft_pps
    if params.tot_mag is not None:
        shared_qe.tot_magnetization = params.tot_mag
    #end if
    if params.two_u:
        ulist = [params.ulist[0]]
    else:
        ulist = params.ulist
    #end if
    shared_relax = shared_qe.copy()

    # qmcs list to possibly bundle all DMC calculations
    qmcs = []
    scf_ks_energy = 0
    for u in ulist:
        if u != 0.:
            shared_qe.hubbard_u = obj()
            shared_relax.hubbard_u = obj()
            for inum, i in enumerate(params.uatoms):
                if params.two_u:
                    setattr(shared_qe.hubbard_u, i, params.ulist[inum])
                else:
                    setattr(shared_qe.hubbard_u, i, u)
                    setattr(shared_relax.hubbard_u, i, params.relax_u)
                    #end if
            #end for
        #end if
        scf_inf = None
        scf_path = './scf-u-' + str(u) + '-inf'
        if params.relax:
            shared_relax = shared_qe.copy()
            shared_relax['ion_dynamics'] = 'bfgs'
            shared_relax['cell_dynamics'] = 'bfgs'
            shared_relax['calculation'] = 'vc-relax'
            shared_relax['conv_thr'] = 10e-6
            shared_relax['forc_conv_thr'] = 0.001
            shared_relax['input_DFT'] = params.relax_functional
            shared_relax.nosym = True
            coarse_relax = generate_pwscf(
                identifier='scf',
                path='./coarse_relax-u-' + str(params.relax_u) + '-inf',
                electron_maxstep=params.electron_maxstep,
                nogamma=True,
                system=params.system,
                kgrid=params.dft_grid,
                **shared_relax)
            sims.append(coarse_relax)

            shared_relax['conv_thr'] = 10e-8
            shared_relax['forc_conv_thr'] = 0.001
            fine_relax = generate_pwscf(
                identifier='scf',
                path='./fine_relax-u-' + str(params.relax_u) + '-inf',
                electron_maxstep=params.electron_maxstep,
                nogamma=True,
                system=params.system,
                kgrid=params.dft_grid,
                dependencies=(coarse_relax, 'structure'),
                **shared_relax)
            sims.append(fine_relax)

            scf_inf = generate_pwscf(
                identifier='scf',
                path=scf_path,
                electron_maxstep=params.electron_maxstep,
                nogamma=True,
                system=params.system,
                #nosym = True,
                kgrid=params.dft_grid,
                calculation='scf',
                dependencies=(fine_relax, 'structure'),
                **shared_qe)
            #pdb.set_trace()

        else:
            scf_inf = generate_pwscf(
                identifier='scf',
                path=scf_path,
                electron_maxstep=params.electron_maxstep,
                nogamma=True,
                system=params.system,
                #nosym = True,
                kgrid=params.dft_grid,
                calculation='scf',
                **shared_qe)

        sims.append(scf_inf)

        if params.nscf_only is True:
            params.tilings = []
            params.vmc_opt = False
            params.qmc = False

        if params.print_ke_corr:
            scf_dir = scf_inf.remdir
            pwscf_output = scf_inf.input.control.outdir
            datafile_xml = scf_dir + '/' + pwscf_output + '/pwscf.save/data-file-schema.xml'
            if os.path.isfile(datafile_xml):
                xmltree = minidom.parse(datafile_xml)
                ks_energies = xmltree.getElementsByTagName("ks_energies")
                eig_tot = 0
                for kpt in ks_energies:
                    w = float(
                        kpt.getElementsByTagName('k_point')[0].getAttribute(
                            'weight'))
                    eigs = np.array(kpt.getElementsByTagName('eigenvalues')
                                    [0].firstChild.nodeValue.split(' '),
                                    dtype='f')
                    occs = np.array(
                        kpt.getElementsByTagName(
                            'occupations')[0].firstChild.nodeValue.split(' '),
                        dtype='f')  #Non-integer occupations from DFT
                    eig_tot += w * sum(
                        eigs * occs) / 2  #Divide by two for both spins
                #end for
                print scf_dir, "e_tot eigenvalues in Ha ", eig_tot / 2
                if scf_ks_energy == 0:
                    scf_ks_energy = eig_tot / 2
            #end if
        #end if
        for tl_num, tl in enumerate(params.tilings):
            for k in params.qmc_grids:
                knum = k[1] * k[2] * k[0]
                if params.relax:
                    relax = fine_relax  #prim = scf_inf.load_analyzer_image().input_structure.copy()
                    print 'Make sure the previous run is loaded to results!'
                    #scf_inf.system.structure
                else:
                    relax = scf_inf
                    prim = params.system.structure.copy()
                    #system = params.system
                prim.clear_kpoints()
                super = prim.tile(tl)

                tl_np = np.array(tl)
                tl_det = int(np.abs(np.linalg.det(tl_np)) + 0.001)

                if params.natoms is not None:
                    natoms = tl_det * params.natoms
                else:
                    natoms = len(super.elem)
                #end if
                if params.rcut:
                    rcut = params.rcut[tl_num]
                else:
                    rcut = super.rwigner() - 0.00001
                #end if
                if params.tot_mag is not None and params.qp is False:
                    system = generate_physical_system(
                        structure=prim,
                        tiling=tl,
                        kgrid=k,
                        kshift=params.kshift,  #(0, 0, 0),
                        net_charge=params.charge,
                        net_spin=params.tot_mag,
                        use_prim=False,
                        **params.system.valency)
                elif params.qp is False:
                    system = generate_physical_system(
                        structure=prim,
                        tiling=tl,
                        kgrid=k,
                        shift=params.kshift,  #(0, 0, 0),
                        net_charge=params.charge,
                        **params.system.valency)
                else:
                    system = generate_physical_system(
                        structure=prim,
                        tiling=tl,
                        kgrid=k,
                        kshift=params.kshift,  #(0, 0, 0),
                        use_prim=False,
                        **params.system.valency)
                #end if
                # DFT NSCF To Generate Wave Function At Specified K-points

                if params.dft_grid == params.qmc_grids[0] and len(
                        params.qmc_grids) == 1:
                    params.nscf_skip = True

                if not params.nscf_skip:
                    if params.relax:
                        nscf_dep = [(scf_inf, 'charge_density'),
                                    (relax, 'structure')]
                    else:
                        nscf_dep = [(scf_inf, 'charge_density')]
                    #end if
                    nscf_path = './nscf-u-' + str(u) + '-' + str(
                        knum) + '-' + str(natoms)
                    p2q_path = nscf_path
                    nscf = generate_pwscf(
                        identifier='nscf',
                        path=nscf_path,
                        system=system,
                        #nosym = True,
                        nogamma=True,
                        dependencies=nscf_dep,
                        calculation='nscf',
                        **shared_qe)
                    sims.append(nscf)

                    if params.relax:
                        p2q_dep = [(nscf, 'orbitals'), (relax, 'structure')]
                    else:
                        p2q_dep = [(nscf, 'orbitals')]
                    #end if
                else:
                    p2q_path = scf_path
                    if params.relax:
                        p2q_dep = [(scf_inf, 'orbitals'), (relax, 'structure')]
                    else:
                        p2q_dep = [(scf_inf, 'orbitals')]
                    #end if
                #end if
                # Convert DFT Wavefunction Into HDF5 File For QMCPACK
                p2q = generate_pw2qmcpack(
                    identifier='p2q',
                    path=p2q_path,
                    job=p2q_job,
                    write_psir=False,
                    dependencies=p2q_dep,
                )
                sims.append(p2q)

                if params.print_ke_corr and not params.nscf_skip:
                    import h5py
                    nscf_dir = nscf.remdir
                    pwscf_output = nscf.input.control.outdir
                    h5_file = nscf_dir + '/' + pwscf_output + '/pwscf.pwscf.h5'
                    #Assume equal weight for all k-points
                    eig_tot = 0
                    nkpts = 0
                    if os.path.isfile(h5_file):
                        f = h5py.File(h5_file, 'r+')
                        nelect = f['electrons']['number_of_electrons'][:]

                        for group_e in f['electrons'].keys():
                            if group_e.startswith('kpoint'):
                                nkpts += 1
                                f_temp = f['electrons'][group_e]
                                for group_k in f_temp.keys():
                                    k_s_eig = [0]
                                    w = 0
                                    if group_k.startswith('spin_0'):
                                        k_s_eig = f_temp[group_k][
                                            'eigenvalues'][:]
                                        k_s_eig = k_s_eig[0:nelect[
                                            0]]  #fixed occupations from the number of electrons
                                        w = f_temp['weight'][0]
                                    elif group_k.startswith('spin_1'):
                                        k_s_eig = f_temp[group_k][
                                            'eigenvalues'][:]
                                        k_s_eig = k_s_eig[0:nelect[1]]
                                        w = f_temp['weight'][0]
                                        #pdb.set_trace()
                                    #end if
                                    eig_tot += sum(k_s_eig) * w / 2
                                #end for
                            #end if
                        #end fof
                        print nscf_dir, "e_tot eigenvalues in Ha", eig_tot / 2 - scf_ks_energy, "wigner " + str(
                            system['structure'].rwigner())
                    #end if
                #end if

                # DFT is complete, rest is QMC

                # change here for other AFM atoms
                system.rename(Co1='Co', Co2='Co', Co3='Co', folded=False)
                system.rename(Ni1='Ni', Ni2='Ni', Ni3='Ni', folded=False)

                # VMC Optimization
                linopt1 = linear(
                    energy=0.0,  # 0.95
                    unreweightedvariance=1.0,
                    reweightedvariance=0.0,  # 0.05
                    timestep=0.3,
                    samples=samples,
                    walkers=walkers,
                    warmupsteps=10,
                    blocks=blocks,
                    steps=1,
                    substeps=10,
                    maxweight=1e9,
                    gpu=True,
                    minmethod='OneShiftOnly',
                    minwalkers=0.01,
                    usebuffer=True,
                    exp0=-6,
                    bigchange=10.0,
                    alloweddifference=1e-04,
                    stepsize=0.15,
                    nstabilizers=1,
                )

                # Quasiparticle calculation
                if params.qp:
                    etot = system.particles.down_electron.count + system.particles.up_electron.count
                    upe = (etot + params.tot_mag * tl_det) / 2 - params.charge
                    downe = etot - params.charge - upe
                    system.particles.down_electron.count = downe
                    system.particles.up_electron.count = upe
                #end if

                # 1. VMC optimization is requested
                # 2. VMC optimization is done on the first element uf ulist
                # 3. VMC optimization is done on the first element of qmc_grids

                if params.vmc_opt and u == params.ulist[
                        0] and k == params.qmc_grids[0]:

                    # VMC Variance minimization

                    opt_varmin = generate_qmcpack(
                        identifier='opt-varmin',
                        path='./opt-u-' + str(u) + '-' + str(natoms) +
                        '-varmin-' + str(params.j),
                        job=opt_job,
                        input_type='basic',
                        system=system,
                        spin_polarized=True,  # jtk: needs this
                        meshfactor=1.0,
                        hybrid_rcut=params.hybrid_rcut,
                        hybrid_lmax=params.hybrid_lmax,
                        #spline_radius  = params.spline_radius,
                        twistnum=params.twistnum,
                        #bconds         = 'ppp',
                        pseudos=params.qmc_pps,
                        jastrows=[('J1', 'bspline', params.j, rcut),
                                  ('J2', 'bspline', params.j, rcut, 'init',
                                   'zero')],
                        calculations=[
                            loop(max=6, qmc=linopt1),
                            loop(max=6, qmc=linopt1)
                        ],
                        dependencies=(p2q, 'orbitals'))
                    sims.append(opt_varmin)

                    # QMC Optimization Parameters - Finer Sampling Set -- Energy Minimization
                    linopt2 = linopt1.copy()
                    linopt2.minwalkers = 0.5
                    linopt2.energy = 0.95
                    linopt2.unreweightedvariance = 0.0
                    linopt2.reweightedvariance = 0.05
                    linopt3 = linopt2.copy()
                    linopt3.minwalkers = 0.5
                    ##
                    emin_dep = []

                    # Use preliminary optimization step made of two steps
                    if not params.nopre:
                        preopt_emin = generate_qmcpack(
                            identifier='opt-emin',
                            path='./preopt-u-' + str(u) + '-' + str(natoms) +
                            '-emin-' + str(params.j),
                            job=opt_job,
                            input_type='basic',
                            system=system,
                            spin_polarized=True,  # jtk: needs this
                            meshfactor=params.meshfactor,
                            hybrid_rcut=params.hybrid_rcut,
                            hybrid_lmax=params.hybrid_lmax,
                            #spline_radius  = params.spline_radius,
                            twistnum=params.twistnum,
                            #bconds         = 'ppp',
                            pseudos=params.qmc_pps,
                            jastrows=[],
                            calculations=[loop(max=2, qmc=linopt2)],
                            dependencies=[(p2q, 'orbitals'),
                                          (opt_varmin, 'jastrow')])
                        sims.append(preopt_emin)
                        emin_dep = preopt_emin
                    else:
                        emin_dep = opt_varmin
                    #end if

                    opt_emin = generate_qmcpack(
                        identifier='opt-emin',
                        path='./opt-u-' + str(u) + '-' + str(natoms) +
                        '-emin-' + str(params.j),
                        job=opt_job,
                        input_type='basic',
                        system=system,
                        spin_polarized=True,  # jtk: needs this
                        meshfactor=params.meshfactor,
                        hybrid_rcut=params.hybrid_rcut,
                        hybrid_lmax=params.hybrid_lmax,
                        #spline_radius  = params.spline_radius,
                        twistnum=params.twistnum,
                        #bconds         = 'ppp',
                        pseudos=params.qmc_pps,
                        jastrows=[],
                        calculations=[
                            loop(max=4, qmc=linopt2),
                            loop(max=4, qmc=linopt3)
                        ],
                        dependencies=[(p2q, 'orbitals'),
                                      (emin_dep, 'jastrow')])
                    sims.append(opt_emin)

                    # 3-body jastrows

                    if params.j3:
                        j3_dep = []
                        linopt2.walkers = 16
                        linopt2.blocks = linopt2.blocks * 2
                        linopt2.samples = linopt1.samples * 2

                        j3_rcut = min(system['structure'].rwigner() - 0.0001,
                                      4.0)
                        if not params.nopre:
                            preopt_emin_J3 = generate_qmcpack(
                                identifier='opt-emin-J3',
                                path='./preopt-u-' + str(u) + '-' +
                                str(natoms) + '-emin-J3-' + str(params.j),
                                job=opt_job,
                                input_type='basic',
                                system=system,
                                spin_polarized=True,  # jtk: needs this
                                meshfactor=params.meshfactor,
                                hybrid_rcut=params.hybrid_rcut,
                                hybrid_lmax=params.hybrid_lmax,
                                #spline_radius  = params.spline_radius,
                                twistnum=params.twistnum,
                                #bconds         = 'ppp',
                                pseudos=params.qmc_pps,
                                jastrows=[('J3', 'polynomial', 3, 3, j3_rcut)],
                                calculations=[loop(max=2, qmc=linopt2)],
                                dependencies=[(p2q, 'orbitals'),
                                              (opt_emin, 'jastrow')])
                            sims.append(preopt_emin_J3)
                            j3_dep = preopt_emin_J3
                        else:
                            j3_dep = opt_emin
                        #end if

                        opt_emin_J3 = generate_qmcpack(
                            identifier='opt-emin-J3',
                            path='./opt-u-' + str(u) + '-' + str(natoms) +
                            '-emin-J3-' + str(params.j),
                            job=opt_job,
                            input_type='basic',
                            system=system,
                            spin_polarized=True,  # jtk: needs this
                            meshfactor=params.meshfactor,
                            hybrid_rcut=params.hybrid_rcut,
                            hybrid_lmax=params.hybrid_lmax,
                            #spline_radius  = params.spline_radius,
                            twistnum=params.twistnum,
                            #bconds         = 'ppp',
                            pseudos=params.qmc_pps,
                            jastrows=[('J3', 'polynomial', 3, 3, j3_rcut)],
                            calculations=[
                                loop(max=4, qmc=linopt2),
                                loop(max=4, qmc=linopt2)
                            ],
                            dependencies=[(p2q, 'orbitals'),
                                          (j3_dep, 'jastrow')])
                        sims.append(opt_emin_J3)
                    #end if
                #end if

                # VMC is complete, run DMC

                dmc_nodes = np.round(
                    np.ceil(knum * dmcnodespertwist) / minnodes) * minnodes
                dmc_job = Job(nodes=int(dmc_nodes),
                              hours=dmc_hours,
                              threads=qmc_threads,
                              app=qmcapp,
                              presub=qmc_presub)

                # Add any future estimators here
                from qmcpack_input import spindensity, skall, density
                if params.density is not None:
                    est = [spindensity(grid=params.density)]
                else:
                    est = None
                #end if

                #Initial VMC calculation to generate walkers for DMC
                calculations = [
                    vmc(
                        warmupsteps=25,
                        blocks=vmcblocks,
                        steps=1,
                        stepsbetweensamples=1,
                        walkers=walkers,
                        timestep=vmcdt,
                        substeps=4,
                        samplesperthread=int(dmcwalkers /
                                             (dmcnodespertwist * walkers)),
                    ),
                    #                                                dmc(
                    #                                                        warmupsteps =0,
                    #                                                        blocks      =dmceqblocks/4,
                    #                                                        steps       =5,
                    #                                                        timestep    =0.04,
                    #                                                        nonlocalmoves=params.tmoves,
                    #                                                        ),
                    #                                                dmc(
                    #                                                        warmupsteps =0,
                    #                                                        blocks      =dmceqblocks/4,
                    #                                                        steps       =5,
                    #                                                        timestep    =0.02,
                    #                                                        nonlocalmoves=params.tmoves,
                    #                                                        ),
                ]
                # Scan over timesteps
                if params.timesteps is None:
                    params.timesteps = [0.01]
                #end if
                for t in params.timesteps:
                    calculations.append(
                        dmc(
                            warmupsteps=dmceqblocks / 2,
                            blocks=int(dmcblocks / (np.sqrt(t) * 10)),
                            steps=10,
                            timestep=t,
                            nonlocalmoves=params.tmoves,
                        ))
                #end for

                # Prepanding name for the path
                pathpre = 'dmc'
                if params.vmc:
                    pathpre = 'vmc'
                #end if

                deps = [(p2q, 'orbitals')]

                has_jastrow = False
                # 3-body jastrow calculation with VMC or DMC
                if params.j3:
                    has_jastrow = True
                    # add j3 dependenciies
                    if params.vmc_opt:
                        deps.append((opt_emin_J3, 'jastrow'))
                    #end if

                    if params.tmoves:
                        path = './' + pathpre + '-j3-tm-u-' + str(
                            u) + '-' + str(knum) + '-' + str(natoms)
                    else:
                        path = './' + pathpre + '-j3-nl-u-' + str(
                            u) + '-' + str(knum) + '-' + str(natoms)
                    #end if
                #end if
                # 2-body jastrow calculation with VMC or DMC
                if params.j2:
                    has_jastrow = True
                    #add j2 dependencies
                    if params.vmc_opt:
                        deps.append((opt_emin, 'jastrow'))
                    #end if
                    if params.tmoves:
                        path = './' + pathpre + '-j2-tm-u-' + str(
                            u) + '-' + str(knum) + '-' + str(natoms)
                    else:
                        path = './' + pathpre + '-j2-nl-u-' + str(
                            u) + '-' + str(knum) + '-' + str(natoms)
                    #end if
                #end if
                # No jastrow calculation with VMC or DMC
                if not has_jastrow:
                    if params.tmoves:
                        path = './' + pathpre + '-j0-tm-u-' + str(
                            u) + '-' + str(knum) + '-' + str(natoms)
                    else:
                        path = './' + pathpre + '-j0-nl-u-' + str(
                            u) + '-' + str(knum) + '-' + str(natoms)
                    #end if
                #end if

                det_format = 'new'
                # Optical excitation
                if params.excitation is not None:
                    path += '_' + params.excitation[
                        0] + '_' + params.excitation[1].replace(" ", "_")
                    det_format = 'old'
                #end if
                # Charged cell
                if params.charge != 0:
                    path += '_' + str(params.charge)
                #end if

                if params.qmc:
                    qmc = generate_qmcpack(seed=params.seed,
                                           skip_submit=params.qmc_skip_submit,
                                           det_format=det_format,
                                           identifier=pathpre,
                                           path=path,
                                           job=dmc_job,
                                           input_type='basic',
                                           system=system,
                                           estimators=est,
                                           meshfactor=params.meshfactor,
                                           hybrid_rcut=params.hybrid_rcut,
                                           hybrid_lmax=params.hybrid_lmax,
                                           excitation=params.excitation,
                                           pseudos=params.qmc_pps,
                                           jastrows=[],
                                           spin_polarized=True,
                                           calculations=calculations,
                                           dependencies=deps)
                    qmcs.append(qmc)
                #end if
            #end if
        #end for
    #end for
    if params.bundle:
        from bundle import bundle
        qmcb = bundle(qmcs)
        sims.append(qmcb)
    else:
        sims = sims + qmcs
        return sims
Exemplo n.º 7
0
linopt2 = linopt1.copy()
linopt2.samples = 16384

# QMC Optimization
opt = generate_qmcpack(
    identifier      = 'opt',
    path            = '.',
    job             = opt_job,
    input_type      = 'basic',
    system          = rocksalt_LiH,
    twistnum        = 0,
    bconds          = 'ppp',
    pseudos         = qmc_pps,
    jastrows        = [('J1','bspline',8),
                       ('J2','bspline',8)],
    calculations    = [loop(max=4,qmc=linopt1),
                       loop(max=4,qmc=linopt2)],
    dependencies    = (p2q,'orbitals'),
    )
pp = opt.input.get('pseudos')
pp.Li.set(
    format  = 'casino',
    l_local = 's',
    nrule   = 2,
    lmax    = 2,
    cutoff  = 2.19,
    )
pp.H.set(
    format  = 'casino',
    l_local = 's',
    nrule   = 2,
Exemplo n.º 8
0
    beta                 = 0.025,
    exp0                 = -16,
    bigchange            = 15.0,
    alloweddifference    = 1e-4,
    stepsize             = 0.2,
    stabilizerscale      = 1.0,
    nstabilizers         = 3
    )

linopt2 = linopt1.copy()  
linopt2.samples = 20480 # opt w/ 20000 samples

linopt3 = linopt1.copy()
linopt3.samples = 40960 # opt w/ 40000 samples

opt_calcs = [loop(max=8,qmc=linopt1), # loops over opt's
             loop(max=6,qmc=linopt2),
             loop(max=4,qmc=linopt3)]

# specify DMC parameters
qmc_calcs = [
    vmc(
        walkers     =   1,
        warmupsteps =  30,
        blocks      =  20,
        steps       =  10,
        substeps    =   2,
        timestep    =  .4,
        samples     = 2048
        ),
    dmc(
Exemplo n.º 9
0
         size=8)  # with 8 knots
 ],
 # opt parameters (qmcpack)
 perform_opt=True,  # produce optimal jastrows
 block_opt=False,  # if true, ignores opt and qmc
 skip_submit_opt=False,  # if true, writes input files, does not run opt
 opt_kpoint='L',  # supercell k-point for the optimization
 opt_calcs=[  # qmcpack input parameters for opt
     loop(
         max=4,  # No. of loop iterations
         qmc=linear(  # linearized optimization method
             energy=0.0,  # cost function
             unreweightedvariance=1.0,  #   is all unreweighted variance
             reweightedvariance=0.0,  #   no energy or r.w. var. 
             timestep=0.5,  # vmc timestep (1/Ha)
             warmupsteps=100,  # MC steps before data collected 
             samples=16000,  # samples used for cost function 
             stepsbetweensamples=10,  # steps between uncorr. samples
             blocks=10,  # ignore this  
             minwalkers=0.1,  #  and this
             bigchange=15.0,  #  and this
             alloweddifference=1e-4  #  and this, for now
         )),
     loop(
         max=4,
         qmc=linear(  # same as above, except
             energy=0.5,  # cost function
             unreweightedvariance=0.0,  #   is 50/50 energy and r.w. var.
             reweightedvariance=0.5,
             timestep=0.5,
             warmupsteps=100,
Exemplo n.º 10
0
          size     = 8,           # with 8 knots
          rcut     = 8.0),        # and a radial cutoff of 8 bohr
     ],
 # opt parameters (qmcpack)
 perform_opt     = True,     # produce optimal jastrows
 block_opt       = False,    # if true, ignores opt and qmc
 skip_submit_opt = False,    # if true, writes input files, does not run opt
 opt_calcs       = [         # qmcpack input parameters for opt
     loop(max = 4,                        # No. of loop iterations
          qmc = linear(                   # linearized optimization method
             energy               =  0.0, # cost function
             unreweightedvariance =  1.0, #   is all unreweighted variance
             reweightedvariance   =  0.0, #   no energy or r.w. var. 
             timestep             =  0.5, # vmc timestep (1/Ha)
             warmupsteps          =  100, # MC steps before data collected 
             samples              = 16000,# samples used for cost function 
             stepsbetweensamples  =   10, # steps between uncorr. samples
             blocks               =   10, # ignore this  
             minwalkers           =   0.1,#  and this
             bigchange            =  15.0,#  and this
             alloweddifference    =  1e-4 #  and this, for now
             )
          )
     ],
 # qmc parameters (qmcpack)
 block_qmc       = False,    # if true, ignores qmc
 skip_submit_qmc = False,    # if true, writes input file, does not run qmc
 qmc_calcs       = [         # qmcpack input parameters for qmc
     vmc(                      # vmc parameters 
         timestep      = 0.5,  # vmc timestep (1/Ha)
         warmupsteps   = 100,  # No. of MC steps before data is collected
Exemplo n.º 11
0
linopt4.minwalkers = 0.85   # 0.5
linopt4.samples = linopt3.samples*4

#### optimize 12-body Jastrow
optJ12 = generate_qmcpack(
    identifier     = 'optJ12',
    path           = 'optJ12',
    job            = job(nodes=1, queue='debug', hours=0.5, constraint='knl', presub=scf_presub),
    #job            = job(nodes=1, threads=4),
    system         = system,
    J2             = True,         # 2-body B-spline Jastrow
    J1_rcut        = 5.0,          # 4 Bohr cutoff for J1
    J2_rcut        = 5.0,          # 7 Bohr cutoff for J2
    pseudos        = ['Be.ccECP.xml', 'H.ccECP.xml'],
    calculations   = [
                loop(max=3, qmc=linopt1),
                loop(max=3, qmc=linopt2),
                loop(max=3, qmc=linopt3),
        ],
    dependencies = orbdeps,
    )
sims.append(optJ12)

##### optimize 3-body Jastrow
optJ123 = generate_qmcpack(
    identifier     = 'optJ123',
    path           = 'optJ123',
    job            = job(nodes=1, queue='debug', hours=0.5, constraint='knl', presub=scf_presub),
    #job            = job(nodes=1, threads=4),
    system         = system,
    J3             = True,         # 2-body B-spline Jastrow
Exemplo n.º 12
0
    beta                 = 0.025,
    exp0                 = -16,
    bigchange            = 15.0,
    alloweddifference    = 1e-4,
    stepsize             = 0.2,
    stabilizerscale      = 1.0,
    nstabilizers         = 3
    )

linopt2 = linopt1.copy()  
linopt2.samples = 20480 # opt w/ 20000 samples

linopt3 = linopt1.copy()
linopt3.samples = 40960 # opt w/ 40000 samples

opt_calcs = [loop(max=8,qmc=linopt1), # loops over opt's
             loop(max=6,qmc=linopt2),
             loop(max=4,qmc=linopt3)]

# specify DMC parameters
qmc_calcs = [
    vmc(
        walkers     =   1,
        warmupsteps =  30,
        blocks      =  20,
        steps       =  10,
        substeps    =   2,
        timestep    =  .4,
        samples     = 2048
        ),
    dmc(