Exemplo n.º 1
0
def dot(left_node, right_node, reduction_axes_count=None, name=None):
    # type: (Node, Node, int, str) -> Node
    """Return node which performs generalized dot product of two input nodes.

    This operation is capable of performing scalar-tensor, matrix-vector product and matrix
    multiplication.

    :param left_node: The node providing left hand side data.
    :param right_node: The node providing right hand side data.
    :param reduction_axes_count: The number of axes to reduce during dot-product.
    :param name: The optional name for output node.
    :return: The new node performing dot-product on input two nodes.
    """
    if reduction_axes_count is None:
        return Dot(left_node, right_node)
    else:
        return Dot(left_node, right_node, reduction_axes_count)
Exemplo n.º 2
0
def binary_op(op_str, a, b):

    if op_str == '+':
        return a + b
    elif op_str == 'Add':
        return Add(a, b)
    elif op_str == '-':
        return a - b
    elif op_str == 'Sub':
        return Subtract(a, b)
    elif op_str == '*':
        return a * b
    elif op_str == 'Mul':
        return Multiply(a, b)
    elif op_str == '/':
        return a / b
    elif op_str == 'Div':
        return Divide(a, b)
    elif op_str == 'Dot':
        return Dot(a, b)
    elif op_str == 'Equal':
        return Equal(a, b)
    elif op_str == 'Greater':
        return Greater(a, b)
    elif op_str == 'GreaterEq':
        return GreaterEq(a, b)
    elif op_str == 'Less':
        return Less(a, b)
    elif op_str == 'LessEq':
        return LessEq(a, b)
    elif op_str == 'Maximum':
        return Maximum(a, b)
    elif op_str == 'Minimum':
        return Minimum(a, b)
    elif op_str == 'NotEqual':
        return NotEqual(a, b)
    elif op_str == 'Power':
        return Power(a, b)
Exemplo n.º 3
0
def binary_op(op_str, a, b):

    if op_str == '+':
        return a + b
    elif op_str == 'Add':
        return ng.add(a, b)
    elif op_str == '-':
        return a - b
    elif op_str == 'Sub':
        return ng.subtract(a, b)
    elif op_str == '*':
        return a * b
    elif op_str == 'Mul':
        return ng.multiply(a, b)
    elif op_str == '/':
        return a / b
    elif op_str == 'Div':
        return ng.divide(a, b)
    elif op_str == 'Dot':
        return Dot(a, b)
    elif op_str == 'Equal':
        return ng.equal(a, b)
    elif op_str == 'Greater':
        return ng.greater(a, b)
    elif op_str == 'GreaterEq':
        return ng.greater_equal(a, b)
    elif op_str == 'Less':
        return ng.less(a, b)
    elif op_str == 'LessEq':
        return ng.less_equal(a, b)
    elif op_str == 'Maximum':
        return ng.maximum(a, b)
    elif op_str == 'Minimum':
        return ng.minimum(a, b)
    elif op_str == 'NotEqual':
        return ng.not_equal(a, b)
    elif op_str == 'Power':
        return ng.power(a, b)
Exemplo n.º 4
0
def dot(left_node, right_node, name=None):
    # type: (Node, Node, str) -> Node
    """Return node which performs matrix multiplication of two input nodes."""
    return Dot(left_node, right_node)
Exemplo n.º 5
0
def relu(op):  # type: (Node) -> Node
    """Relu operator."""
    return Maximum(op, make_float32_constant_like(0., op))


# Flatten
X1 = Reshape(Input, AxisVector([0, 1, 2]), Shape([bz, 784]))

# Normalize
X2 = X1 / make_float32_constant_like(255., X1)

# Affine 1
W1 = Parameter(float_element_type, Shape([784, 100]))
b1 = Parameter(float_element_type, Shape([100]))
X3 = Dot(X2, W1) + Broadcast(b1, Shape([bz, 100]), AxisSet({0}))
X4 = relu(X3)

# Affine 2
W2 = Parameter(float_element_type, Shape([100, 10]))
b2 = Parameter(float_element_type, Shape([10]))
X5 = Dot(X4, W2) + Broadcast(b2, Shape([bz, 10]), AxisSet({0}))

# Softmax
Logits = X5
Exp = Exp(Logits)
Max = Reduce(Exp, make_float32_constant(0., [], set()), MaxFn, AxisSet({1}))
MaxBroadcast = Broadcast(Max, Shape([bz, 10]), AxisSet({1}))
Softmax = Exp / MaxBroadcast

# Loss