Exemplo n.º 1
0
def create_encoder(input_shape, levels = 4):
    import ngraph as ng
    # input
    input_node = ng.parameter(input_shape, np.float32, name="data")

    padding_begin = padding_end = [0, 0]
    strides = [1, 1]
    dilations = [1, 1]
    input_channels = [input_shape[1]]
    last_output = input_node

    # convolution layers
    for i in range(levels):
        input_c = input_channels[-1]
        output_c = input_c * 2
        conv_w = np.random.uniform(0, 1, [output_c, input_c, 5, 5]).astype(np.float32)
        conv_node = ng.convolution(last_output, conv_w, strides, padding_begin, padding_end, dilations)
        input_channels.append(output_c)
        last_output = conv_node

    # deconvolution layers
    for i in range(levels):
        input_c = input_channels[-2]
        output_c = input_channels.pop(-1)
        deconv_w = np.random.uniform(0, 1, [output_c, input_c, 5, 5]).astype(np.float32)
        deconv_node = ng.convolution_backprop_data(last_output, deconv_w, strides)
        last_output = deconv_node

    # result
    last_output.set_friendly_name("out")
    result_node = ng.result(last_output)
    return ng.Function(result_node, [input_node], "Encoder")
Exemplo n.º 2
0
def test_convolution_backprop_data():
    runtime = get_runtime()

    output_spatial_shape = [9, 9]
    filter_shape = [1, 1, 3, 3]
    data_shape = [1, 1, 7, 7]
    strides = [1, 1]

    data_node = ng.parameter(shape=data_shape)
    filter_node = ng.parameter(shape=filter_shape)
    output_shape_node = ng.constant(np.array(output_spatial_shape, dtype=np.int64))

    deconvolution = ng.convolution_backprop_data(data_node, filter_node, strides, output_shape_node)

    input_data = np.array(
        [
            [
                [
                    [-20, -20, 20, 20, 0, 0, 0],
                    [-20, -20, 20, 20, 0, 0, 0],
                    [-20, -20, 20, 20, 0, 0, 0],
                    [-20, -20, 20, 20, 0, 0, 0],
                    [-20, -20, 20, 20, 0, 0, 0],
                    [-20, -20, 20, 20, 0, 0, 0],
                    [-20, -20, 20, 20, 0, 0, 0],
                ]
            ]
        ],
        dtype=np.float32,
    )

    filter_data = np.array([[1.0, 0.0, -1.0], [2.0, 0.0, -2.0], [1.0, 0.0, -1.0]], dtype=np.float32).reshape(
        1, 1, 3, 3
    )

    model = runtime.computation(deconvolution, data_node, filter_node)
    result = model(input_data, filter_data)
    assert np.allclose(
        result,
        np.array(
            [
                [
                    [
                        [-20.0, -20.0, 40.0, 40.0, -20.0, -20.0, 0.0, 0.0, 0.0],
                        [-60.0, -60.0, 120.0, 120.0, -60.0, -60.0, 0.0, 0.0, 0.0],
                        [-80.0, -80.0, 160.0, 160.0, -80.0, -80.0, 0.0, 0.0, 0.0],
                        [-80.0, -80.0, 160.0, 160.0, -80.0, -80.0, 0.0, 0.0, 0.0],
                        [-80.0, -80.0, 160.0, 160.0, -80.0, -80.0, 0.0, 0.0, 0.0],
                        [-80.0, -80.0, 160.0, 160.0, -80.0, -80.0, 0.0, 0.0, 0.0],
                        [-80.0, -80.0, 160.0, 160.0, -80.0, -80.0, 0.0, 0.0, 0.0],
                        [-60.0, -60.0, 120.0, 120.0, -60.0, -60.0, 0.0, 0.0, 0.0],
                        [-20.0, -20.0, 40.0, 40.0, -20.0, -20.0, 0.0, 0.0, 0.0],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )
Exemplo n.º 3
0
def ConvTranspose(
        onnx_node,
        ng_inputs):  # type: (NodeWrapper, List[NgraphNode]) -> NgraphNode
    """Calculate convolution transpose."""
    if len(ng_inputs) == 3:
        data, weights, bias = ng_inputs
    elif len(ng_inputs) == 2:
        data, weights = ng_inputs
        bias = ng.constant(0, dtype=get_dtype(data.get_element_type()))

    strides = get_strides(onnx_node)
    dilation = get_dilations(onnx_node)
    padding_below, padding_above = get_pads(onnx_node)

    output_padding = onnx_node.get_attribute_value('output_padding')
    if output_padding is None:
        raise ValueError(
            'ConvTranspose node (s%): output_padding attribute is required.',
            onnx_node.name)

    data_shape = list(data.shape)
    weights_shape = list(weights.shape)

    num_spatial_dims = len(data.shape) - 2
    data_dilation_strides = [1, 1]

    data_batch_shape = [1] * (num_spatial_dims + 2)
    data_batch_shape[0] = data_shape[0]
    data_batch_shape[1] = weights_shape[1]

    for i in range(num_spatial_dims):
        # Calculating spatial dims of data output shape for ngraph conv backprop op
        # | pb + s(ds-1) + op - d(ws-1)+1 |
        # | ----------------------------- | + 1
        # |_            dds              _|
        #
        # d   - dilation
        # ds  - data shape
        # dds - data dilation strides
        # op  - putput padding
        # pb  - padding below
        # s   - strides
        # ws  - weights shape
        data_batch_shape[i + 2] = (
            (padding_below[i] +
             ((data_shape[i + 2] - 1) * strides[i] + 1) + output_padding[i]) -
            ((weights_shape[i + 2] - 1) * dilation[i] + 1) +
            1) // data_dilation_strides[i] + 1

    transconv = ng.convolution_backprop_data(data_batch_shape, weights, data,
                                             strides, dilation, padding_below,
                                             padding_above,
                                             data_dilation_strides)
    if len(bias.shape) > 0:
        return transconv + ng.broadcast_to(bias, transconv.shape, 1)
    else:
        return transconv
Exemplo n.º 4
0
def test_convolution_backprop_data():
    runtime = get_runtime()

    data_batch_shape = [1, 1, 9, 9]
    filter_shape = [1, 1, 3, 3]
    output_delta_shape = [1, 1, 7, 7]

    filter_param = ng.parameter(shape=filter_shape)
    output_delta_param = ng.parameter(shape=output_delta_shape)

    deconvolution = ng.convolution_backprop_data(data_batch_shape, filter_param, output_delta_param)

    data_batch_data = np.array([[[[-20, -20, 20, 20, 0, 0, 0],
                                  [-20, -20, 20, 20, 0, 0, 0],
                                  [-20, -20, 20, 20, 0, 0, 0],
                                  [-20, -20, 20, 20, 0, 0, 0],
                                  [-20, -20, 20, 20, 0, 0, 0],
                                  [-20, -20, 20, 20, 0, 0, 0],
                                  [-20, -20, 20, 20, 0, 0, 0]]]],
                               dtype=np.float32)

    filter_data = np.array([
        [1., 0., -1.],
        [2., 0., -2.],
        [1., 0., -1.]], dtype=np.float32).reshape(1, 1, 3, 3)

    model = runtime.computation(deconvolution, filter_param, output_delta_param)
    result = model(filter_data, data_batch_data)
    assert np.allclose(result,
                       np.array([[[[-20., -20., 40., 40., -20., -20., 0., 0., 0.],
                                   [-60., -60., 120., 120., -60., -60., 0., 0., 0.],
                                   [-80., -80., 160., 160., -80., -80., 0., 0., 0.],
                                   [-80., -80., 160., 160., -80., -80., 0., 0., 0.],
                                   [-80., -80., 160., 160., -80., -80., 0., 0., 0.],
                                   [-80., -80., 160., 160., -80., -80., 0., 0., 0.],
                                   [-80., -80., 160., 160., -80., -80., 0., 0., 0.],
                                   [-60., -60., 120., 120., -60., -60., 0., 0., 0.],
                                   [-20., -20., 40., 40., -20., -20., 0., 0., 0.]]]],
                                dtype=np.float32))