Exemplo n.º 1
0
def kappa(mesh,lset_approx, subdivlvl=0):
    """
Tuple of ratios between negative/positive and full
part of an element (deprecated).
    """
    print("kappa-function is deprecated - use CutRatioGF instead")
    kappa1 = GridFunction(L2(mesh,order=0))
    lset_neg = { "levelset" : lset_approx, "domain_type" : NEG, "subdivlvl" : subdivlvl}
    kappa_f = LinearForm(kappa1.space)
    kappa_f += SymbolicLFI(levelset_domain = lset_neg, form = kappa1.space.TestFunction() )
    kappa_f.Assemble();
    kappa1.space.SolveM(CoefficientFunction(1.0),kappa_f.vec)
    kappa1.vec.data = kappa_f.vec
    kappa2 = 1.0 - kappa1
    return (kappa1,kappa2)
Exemplo n.º 2
0
    def single_iteration(self, a: ngs.BilinearForm, L: ngs.LinearForm,
                         precond: ngs.Preconditioner,
                         gfu: ngs.GridFunction) -> None:

        if self.linearize == 'Oseen':
            self.construct_and_run_solver(a, L, precond, gfu)
            component = self.model_components['u']
            err = norm("l2_norm",
                       self.W[0],
                       gfu.components[0],
                       self.mesh,
                       self.fes.components[component],
                       average=False)
            gfu_norm = mean(gfu.components[0], self.mesh)
            numit = 1

            if self.verbose > 0:
                print(numit, err)

            while (err > self.abs_nonlinear_tolerance +
                   self.rel_nonlinear_tolerance * gfu_norm) and (
                       numit < self.nonlinear_max_iters):
                self.W[0].vec.data = gfu.components[0].vec
                self.apply_dirichlet_bcs_to(gfu)

                a.Assemble()
                L.Assemble()
                precond.Update()

                self.construct_and_run_solver(a, L, precond, gfu)

                err = norm("l2_norm",
                           self.W[0],
                           gfu.components[0],
                           self.mesh,
                           self.fes.components[component],
                           average=False)
                gfu_norm = mean(gfu.components[0], self.mesh)
                numit += 1

                if self.verbose > 0:
                    print(numit, err)

            self.W[0].vec.data = gfu.components[0].vec

        elif self.linearize == 'IMEX':
            self.construct_and_run_solver(a, L, precond, gfu)
Exemplo n.º 3
0
Arquivo: wave.py Projeto: prklVIP/DPG
def makeforms(mesh, p, F, q_zero, mu_zero, cwave, epsil=0):

    d = mesh.dim
    W = L2(mesh, order=p + d)
    U = L2(mesh, order=p)
    Zq = H1(mesh, order=p + 1, dirichlet=q_zero, orderinner=0)
    Zmu = H1(mesh, order=p + 1, dirichlet=mu_zero, orderinner=0)

    spacelist = [W] * d + [U] * d + [Zq] * (d - 1) + [Zmu]
    X = FESpace(spacelist)
    # separate    W...W, U...U,  Zq...Zq,  Zmu
    separators = [d, 2 * d, 2 * d + (d - 1)]

    Xtrials = X.TrialFunction()
    e = Xtrials[0:separators[0]]
    u = Xtrials[separators[0]:separators[1]]
    zu = Xtrials[separators[1]:]

    Xtests = X.TestFunction()
    w = Xtests[0:separators[0]]
    v = Xtests[separators[0]:separators[1]]
    zv = Xtests[separators[1]:]

    n = specialcf.normal(d)

    a = BilinearForm(X, symmetric=True, eliminate_internal=True)
    a += SymbolicBFI(vec(e) * vec(w))
    a += SymbolicBFI(waveA(e, cwave) * waveA(w, cwave))
    a += SymbolicBFI(-vec(u) * waveA(w, cwave))
    a += SymbolicBFI(-waveA(e, cwave) * vec(v))
    a += SymbolicBFI(vec(e) * waveD(n, zv, cwave), element_boundary=True)
    a += SymbolicBFI(waveD(n, zu, cwave) * vec(w), element_boundary=True)
    a += SymbolicBFI(-epsil * vec(zu) * vec(zv))

    f = LinearForm(X)
    f += SymbolicLFI(F * vec(w))

    return (a, f, X, separators)
Exemplo n.º 4
0
from netgen.geom2d import unit_square

ngsglobals.msg_level = 1

# generate a triangular mesh of mesh-size 0.2
mesh = Mesh(unit_square.GenerateMesh(maxh=0.2))

# H1-conforming finite element space
fes = H1(mesh, order=3, dirichlet=[1,2,3,4])

# define trial- and test-functions
u = fes.TrialFunction()
v = fes.TestFunction()

# the right hand side
f = LinearForm(fes)
f += 32 * (y*(1-y)+x*(1-x)) * v * dx

# the bilinear-form 
a = BilinearForm(fes, symmetric=True)
a += grad(u)*grad(v)*dx

a.Assemble()
f.Assemble()

# the solution field 
gfu = GridFunction(fes)
gfu.vec.data = a.mat.Inverse(fes.FreeDofs(), inverse="sparsecholesky") * f.vec
# print (u.vec)

def discretize_ngsolve():
    from ngsolve import (ngsglobals, Mesh, H1, CoefficientFunction, LinearForm,
                         SymbolicLFI, BilinearForm, SymbolicBFI, grad,
                         TaskManager)
    from netgen.csg import CSGeometry, OrthoBrick, Pnt
    import numpy as np

    ngsglobals.msg_level = 1

    geo = CSGeometry()
    obox = OrthoBrick(Pnt(-1, -1, -1), Pnt(1, 1, 1)).bc("outer")

    b = []
    b.append(
        OrthoBrick(Pnt(-1, -1, -1), Pnt(0.0, 0.0,
                                        0.0)).mat("mat1").bc("inner"))
    b.append(
        OrthoBrick(Pnt(-1, 0, -1), Pnt(0.0, 1.0, 0.0)).mat("mat2").bc("inner"))
    b.append(
        OrthoBrick(Pnt(0, -1, -1), Pnt(1.0, 0.0, 0.0)).mat("mat3").bc("inner"))
    b.append(
        OrthoBrick(Pnt(0, 0, -1), Pnt(1.0, 1.0, 0.0)).mat("mat4").bc("inner"))
    b.append(
        OrthoBrick(Pnt(-1, -1, 0), Pnt(0.0, 0.0, 1.0)).mat("mat5").bc("inner"))
    b.append(
        OrthoBrick(Pnt(-1, 0, 0), Pnt(0.0, 1.0, 1.0)).mat("mat6").bc("inner"))
    b.append(
        OrthoBrick(Pnt(0, -1, 0), Pnt(1.0, 0.0, 1.0)).mat("mat7").bc("inner"))
    b.append(
        OrthoBrick(Pnt(0, 0, 0), Pnt(1.0, 1.0, 1.0)).mat("mat8").bc("inner"))
    box = (obox - b[0] - b[1] - b[2] - b[3] - b[4] - b[5] - b[6] - b[7])

    geo.Add(box)
    for bi in b:
        geo.Add(bi)
    # domain 0 is empty!

    mesh = Mesh(geo.GenerateMesh(maxh=0.3))

    # H1-conforming finite element space
    V = H1(mesh, order=NGS_ORDER, dirichlet="outer")
    v = V.TestFunction()
    u = V.TrialFunction()

    # Coeff as array: variable coefficient function (one CoefFct. per domain):
    sourcefct = CoefficientFunction([1 for i in range(9)])

    with TaskManager():
        # the right hand side
        f = LinearForm(V)
        f += SymbolicLFI(sourcefct * v)
        f.Assemble()

        # the bilinear-form
        mats = []
        coeffs = [[0, 1, 0, 0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 1, 0],
                  [0, 0, 0, 1, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0, 0]]
        for c in coeffs:
            diffusion = CoefficientFunction(c)
            a = BilinearForm(V, symmetric=False)
            a += SymbolicBFI(diffusion * grad(u) * grad(v),
                             definedon=(np.where(np.array(c) == 1)[0] +
                                        1).tolist())
            a.Assemble()
            mats.append(a.mat)

    from pymor.bindings.ngsolve import NGSolveVectorSpace, NGSolveMatrixOperator, NGSolveVisualizer

    space = NGSolveVectorSpace(V)
    op = LincombOperator(
        [NGSolveMatrixOperator(m, space, space) for m in mats], [
            ProjectionParameterFunctional('diffusion', (len(coeffs), ), (i, ))
            for i in range(len(coeffs))
        ])

    h1_0_op = op.assemble([1] * len(coeffs)).with_(name='h1_0_semi')

    F = space.zeros()
    F._list[0].real_part.impl.vec.data = f.vec
    F = VectorOperator(F)

    return StationaryModel(op,
                           F,
                           visualizer=NGSolveVisualizer(mesh, V),
                           products={'h1_0_semi': h1_0_op},
                           parameter_space=CubicParameterSpace(
                               op.parameter_type, 0.1, 1.))
Exemplo n.º 6
0
def Heat1DFEM(N=8,
              order=1,
              k1=1,
              k2=1,
              Q1=0,
              Q2=10,
              boundary_condition_left="Robin",
              boundary_condition_right="Dirichlet",
              value_left=0,
              value_right=1,
              q_value_left=0,
              q_value_right=1,
              r_value_left=0,
              r_value_right=1,
              intervalsize=0.14):
    if (boundary_condition_left == "Neumann" or
        (boundary_condition_left == "Robin" and r_value_left == 0)) and (
            boundary_condition_right == "Neumann" or
            (boundary_condition_right == "Robin" and r_value_right == 0)):
        print("Temperatur ist nicht eindeutig bestimmt.")
        #return
    mesh1D = Mesh1D(N, interval=(0, intervalsize))
    dbnds = []
    if boundary_condition_left == "Dirichlet":
        dbnds.append(1)
        # print(True)
    if boundary_condition_right == "Dirichlet":
        dbnds.append(2)

    fes = H1(mesh1D, order=order, dirichlet=dbnds)
    gf = GridFunction(fes)

    if boundary_condition_left == "Dirichlet":
        gf.vec[0] = value_left

    if boundary_condition_right == "Dirichlet":
        gf.vec[N] = value_right

    Q = IfPos(X - 0.5 * intervalsize, Q2, Q1)
    k = IfPos(X - 0.5 * intervalsize, k2, k1)

    u, v = fes.TnT()
    a = BilinearForm(fes)
    a += SymbolicBFI(k * grad(u) * grad(v))
    if boundary_condition_left == "Robin":
        a += SymbolicBFI(r_value_left * u * v,
                         definedon=mesh1D.Boundaries("left"))
    if boundary_condition_right == "Robin":
        a += SymbolicBFI(r_value_right * u * v,
                         definedon=mesh1D.Boundaries("right"))
    a.Assemble()
    f = LinearForm(fes)
    f += SymbolicLFI(Q * v)
    f.Assemble()
    if boundary_condition_left == "Neumann":
        f.vec[0] += q_value_left
    elif boundary_condition_left == "Robin":
        f.vec[0] += r_value_left * value_left
    if boundary_condition_right == "Neumann":
        f.vec[N] += q_value_right
    elif boundary_condition_right == "Robin":
        f.vec[N] += r_value_right * value_right

    f.vec.data -= a.mat * gf.vec
    gf.vec.data += a.mat.Inverse(fes.FreeDofs()) * f.vec
    Draw1D(mesh1D, [(gf, "u_h")], n_p=5 * order**2)