def test_dip_out_of_range(self): corners = [Point(0, -1, 1), Point(0, 1, 1), Point(0, 1, 2), Point(0, -1, 2)] msg = 'dip is out of range (0, 90]' self.assert_failed_creation(10, 0, 0, corners, ValueError, msg) self.assert_failed_creation(10, 0, 91, corners, ValueError, msg) self.assert_failed_creation(10, 0, -1, corners, ValueError, msg)
def test4_site_along_strike(self): surface = self._test1to7surface() sites = Mesh.from_points_list([Point(0.2, 0), Point(67.6, 0), Point(90.33, 0)]) dists = surface.get_rx_distance(sites) expected_dists = [0] * 3 self.assertTrue(numpy.allclose(dists, expected_dists))
def test_5_vertical_rupture(self): rupture = self._get_rupture(min_mag=5, max_mag=6, hypocenter_depth=9, aspect_ratio=2, dip=90, rupture_mesh_spacing=4) self.assertEqual(rupture.hypocenter, Point(0, 0, 9)) surface = rupture.surface self._check_dimensions(surface, 7.9527072876705063, 3.9763536438352536, delta=0.02) self.assertAlmostEqual(0, surface.top_left.distance( Point(-0.0252862987308, -0.0252862962683, 7.01182317808)), places=5) self.assertAlmostEqual(0, surface.top_right.distance( Point(0.0252862987308, 0.0252862962683, 7.01182317808)), places=5) self.assertAlmostEqual(0, surface.bottom_left.distance( Point(-0.0252862987308, -0.0252862962683, 10.9881768219)), places=5) self.assertAlmostEqual(0, surface.bottom_right.distance( Point(0.0252862987308, 0.0252862962683, 10.9881768219)), places=5)
def test_4_rupture_wider_than_seismogenic_layer(self): rupture = self._get_rupture(min_mag=7, max_mag=8, hypocenter_depth=9, aspect_ratio=1, dip=30, rupture_mesh_spacing=10) self.assertEqual(rupture.mag, 7.5) self.assertEqual(rupture.hypocenter, Point(0, 0, 9)) surface = rupture.surface # in this test we need to increase the tolerance because the rupture # created is rather big and float imprecision starts to be noticeable self._check_dimensions(surface, 112.93848786315641, 28, delta=0.2) self.assertAlmostEqual( 0, surface.top_left.distance( Point(-0.436201680751, -0.281993828512, 2.0)), delta=0.003) # actual to expected distance is 296 cm self.assertAlmostEqual(0, surface.top_right.distance( Point(0.282002000777, 0.43619639753, 2.0)), delta=0.003) # 52 cm self.assertAlmostEqual(0, surface.bottom_left.distance( Point(-0.282002000777, -0.43619639753, 16.0)), delta=0.003) # 133 cm self.assertAlmostEqual(0, surface.bottom_right.distance( Point(0.436201680751, 0.281993828512, 16.0)), delta=0.003) # 23 cm
def test_3_rupture_deeper_than_lower_seismogenic_depth(self): rupture = self._get_rupture(min_mag=5, max_mag=6, hypocenter_depth=15, aspect_ratio=1, dip=30, rupture_mesh_spacing=10) self.assertEqual(rupture.hypocenter, Point(0, 0, 15)) surface = rupture.surface self._check_dimensions(surface, 5.623413252, 5.623413252, delta=0.02) self.assertAlmostEqual(0, surface.top_left.distance( Point(-0.0378349744035, 0.00207474995049, 13.188293374)), places=5) self.assertAlmostEqual(0, surface.top_right.distance( Point(-0.00207475040284, 0.0378349743787, 13.188293374)), places=5) self.assertAlmostEqual(0, surface.bottom_left.distance( Point(-0.00686571229256, -0.028894512506, 16.0)), places=5) self.assertAlmostEqual(0, surface.bottom_right.distance( Point(0.0288945127134, 0.0068657114195, 16.0)), places=5)
def test_1_rupture_is_inside(self): rupture = self._get_rupture(min_mag=5, max_mag=6, hypocenter_depth=8, aspect_ratio=1, dip=30, rupture_mesh_spacing=1) self.assertEqual(rupture.mag, 5.5) self.assertEqual(rupture.hypocenter, Point(0, 0, 8)) self.assertAlmostEqual(rupture.occurrence_rate, 0.0009) surface = rupture.surface self._check_dimensions(surface, 5.623413252, 5.623413252, delta=0.01) self.assertAlmostEqual(0, surface.top_left.distance( Point(-0.0333647435005, -0.00239548066924, 6.59414668702)), places=5) self.assertAlmostEqual(0, surface.top_right.distance( Point(0.00239548107539, 0.0333647434713, 6.59414668702)), places=5) self.assertAlmostEqual(0, surface.bottom_left.distance( Point(-0.00239548107539, -0.0333647434713, 9.40585331298)), places=5) self.assertAlmostEqual(0, surface.bottom_right.distance( Point(0.0333647435005, 0.00239548066924, 9.40585331298)), places=5)
def test_2_rupture_shallower_than_upper_seismogenic_depth(self): rupture = self._get_rupture(min_mag=5, max_mag=6, hypocenter_depth=3, aspect_ratio=1, dip=30, rupture_mesh_spacing=10) self.assertEqual(rupture.mag, 5.5) self.assertEqual(rupture.hypocenter, Point(0, 0, 3)) self.assertAlmostEqual(rupture.occurrence_rate, 0.0009) surface = rupture.surface self._check_dimensions(surface, 5.623413252, 5.623413252, delta=0.01) self.assertAlmostEqual(0, surface.top_left.distance( Point(-0.0288945127134, -0.0068657114195, 2.0)), places=5) self.assertAlmostEqual(0, surface.top_right.distance( Point(0.00686571229256, 0.028894512506, 2.0)), places=5) self.assertAlmostEqual(0, surface.bottom_left.distance( Point(0.00207475040284, -0.0378349743787, 4.81170662595)), places=5) self.assertAlmostEqual(0, surface.bottom_right.distance( Point(0.0378349744035, -0.00207474995049, 4.81170662595)), places=5)
def test_implied_point_sources(self): source = self.make_area_source(Polygon( [Point(-2, -2), Point(0, -2), Point(0, 0), Point(-2, 0)]), discretization=66.7, rupture_mesh_spacing=5) ruptures = list(source.iter_ruptures(PoissonTOM(50))) self.assertEqual(len(ruptures), 9 * 2) # resulting 3x3 mesh has points in these coordinates: lons = [-1.4, -0.8, -0.2] lats = [-0.6, -1.2, -1.8] ruptures_iter = iter(ruptures) for lat in lats: for lon in lons: r1 = next(ruptures_iter) r2 = next(ruptures_iter) for rupture in [r1, r2]: self.assertAlmostEqual(rupture.hypocenter.longitude, lon, delta=1e-3) self.assertAlmostEqual(rupture.hypocenter.latitude, lat, delta=1e-3) self.assertEqual(rupture.surface.mesh_spacing, 5) self.assertIs(rupture.source_typology, AreaSource) self.assertEqual(r1.mag, 5.5) self.assertEqual(r2.mag, 6.5) self.assertEqual(len(ruptures), 9 * 2)
def get_polygon_area_from_complex_fault_data(fault_top_edge, fault_bottom_edge): fault_top_edge = fault_top_edge.split() fault_top_edge = numpy.array(fault_top_edge, dtype=float).reshape( len(fault_top_edge) / 3, 3) fault_top_edge = Line([Point(v1, v2, v3) for v1, v2, v3 in fault_top_edge]) fault_bottom_edge = fault_bottom_edge.split() fault_bottom_edge = numpy.array(fault_bottom_edge, dtype=float).reshape( len(fault_bottom_edge) / 3, 3) fault_bottom_edge = Line( [Point(v1, v2, v3) for v1, v2, v3 in fault_bottom_edge]) # create complex fault surface surf = ComplexFaultSurface.from_fault_data( [fault_top_edge, fault_bottom_edge], mesh_spacing=10) # extract fault boundary polygon = [] surf_mesh = surf.get_mesh() fault_boundary = surf_mesh._get_bounding_mesh() for lon, lat in zip(fault_boundary.lons, fault_boundary.lats): polygon.append([lon, lat]) # compute surface area _, _, _, cell_area = (surf_mesh.get_cell_dimensions()) area = numpy.sum(cell_area) return polygon, area
def setUp(self): super(PointSourceSourceFilterTestCase, self).setUp() self.sitecol = SiteCollection(self.SITES) self.source1 = make_point_source( mfd=EvenlyDiscretizedMFD(min_mag=5, bin_width=1, occurrence_rates=[1]), rupture_aspect_ratio=1.9, upper_seismogenic_depth=0, lower_seismogenic_depth=18.5, magnitude_scaling_relationship=PeerMSR(), nodal_plane_distribution=PMF([ (0.5, NodalPlane(strike=1, dip=2, rake=3)), (0.5, NodalPlane(strike=1, dip=20, rake=3)), ]), location=Point(2.0, 0.0), ) self.source2 = make_point_source( mfd=EvenlyDiscretizedMFD(min_mag=6.5, bin_width=1, occurrence_rates=[1]), rupture_aspect_ratio=0.5, upper_seismogenic_depth=0, lower_seismogenic_depth=18.5, magnitude_scaling_relationship=PeerMSR(), nodal_plane_distribution=PMF([ (0.5, NodalPlane(strike=1, dip=10, rake=3)), (0.5, NodalPlane(strike=1, dip=20, rake=3)), ]), location=Point(2.0, 0.0), )
def test_dilated(self): source = make_area_source(Polygon( [Point(4, 6), Point(5, 6), Point(4, 5)]), discretization=100) polygon = source.get_rupture_enclosing_polygon(dilation=5) elons = [ 3.8387562, 3.8395259, 3.8418396, 3.8456751, 3.8509956, 3.8577500, 3.8658734, 3.8752878, 3.8859026, 3.8976158, 3.9103145, 3.9238767, 3.9381718, 3.9530621, 3.9684044, 3.9840509, 3.9998509, 5.0001491, 5.0159419, 5.0315815, 5.0469172, 5.0618016, 5.0760915, 5.0896495, 5.1023453, 5.1140566, 5.1246711, 5.1340866, 5.1422127, 5.1489714, 5.1542977, 5.1581407, 5.1604635, 5.1612438, 5.1604744, 5.1581627, 5.1543311, 5.1490166, 5.1422703, 5.1341571, 5.1247551, 5.1141547, 4.1141530, 4.1024651, 4.0897882, 4.0762448, 4.0619656, 4.0470884, 4.0317568, 4.0161187, 4.0003251, 3.9845284, 3.9688809, 3.9535336, 3.9386348, 3.9243281, 3.9107516, 3.8980364, 3.8863052, 3.8756714, 3.8662375, 3.8580948, 3.8513218, 3.8459842, 3.8421334, 3.8398068, 3.8390269 ] elats = [ 5.9999784, 6.0156881, 6.0312472, 6.0465059, 6.0613173, 6.0755391, 6.0890342, 6.1016728, 6.1133333, 6.1239034, 6.1332813, 6.1413768, 6.1481120, 6.1534219, 6.1572555, 6.1595758, 6.1603605, 6.1603605, 6.1595765, 6.1572583, 6.1534281, 6.1481229, 6.1413937, 6.1333052, 6.1239352, 6.1133738, 6.1017226, 6.0890937, 6.0756085, 6.0613967, 6.0465949, 6.0313455, 6.0157950, 6.0000929, 5.9843902, 5.9688377, 5.9535850, 5.9387786, 5.9245607, 5.9110681, 5.8984302, 5.8867686, 4.8869567, 4.8763401, 4.8669175, 4.8587797, 4.8520053, 4.8466598, 4.8427945, 4.8404470, 4.8396398, 4.8403806, 4.8426625, 4.8464633, 4.8517463, 4.8584606, 4.8665414, 4.8759108, 4.8864782, 4.8981417, 4.9107887, 4.9242972, 4.9385367, 4.9533698, 4.9686533, 4.9842397, 4.9999784 ] numpy.testing.assert_allclose(polygon.lons, elons) numpy.testing.assert_allclose(polygon.lats, elats)
def test5_site_opposite_to_strike_direction(self): surface = self._test1to7surface() sites = Mesh.from_points_list([Point(-0.2, 0), Point(-67.6, 0), Point(-90.33, 0)]) dists = surface.get_rx_distance(sites) expected_dists = [0] * 3 self.assertTrue(numpy.allclose(dists, expected_dists))
def test_no_correlation_mean_and_intra_respected(self): mean1 = 10 mean2 = 14 inter = 1e-300 intra1 = 0.2 intra2 = 1.6 p1 = Point(0, 0) p2 = Point(0, 0.3) sites = [Site(p1, mean1, False, inter, intra1), Site(p2, mean2, False, inter, intra2)] self.sites = SiteCollection(sites) numpy.random.seed(41) cormo = JB2009CorrelationModel(vs30_clustering=False) lt_corma = cormo.get_lower_triangle_correlation_matrix(self.sites, self.imt1) s1_intensity, s2_intensity = ground_motion_fields( self.rupture, self.sites, [self.imt1], self.gsim, truncation_level=None, realizations=6000, lt_correlation_matrices={self.imt1: lt_corma} )[self.imt1] self.assertAlmostEqual(s1_intensity.mean(), mean1, delta=1e-3) self.assertAlmostEqual(s2_intensity.mean(), mean2, delta=1e-3) self.assertAlmostEqual(s1_intensity.std(), intra1, delta=2e-3) self.assertAlmostEqual(s2_intensity.std(), intra2, delta=1e-2)
def test8_strike_of_45_degrees(self): corners = [Point(-0.05, -0.05, 8), Point(0.05, 0.05, 8), Point(0.05, 0.05, 9), Point(-0.05, -0.05, 9)] surface = PlanarSurface(1, 45, 60, *corners) sites = Mesh.from_points_list([Point(0.05, 0)]) self.assertAlmostEqual(surface.get_rx_distance(sites)[0], 3.9313415355436705, places=4)
class PlanarSurfaceGetClosestPointsTestCase(unittest.TestCase): corners = [Point(-0.1, -0.1, 0), Point(0.1, -0.1, 0), Point(0.1, 0.1, 2), Point(-0.1, 0.1, 2)] surface = PlanarSurface(10, 90, 45, *corners) def test_point_above_surface(self): sites = Mesh.from_points_list([Point(0, 0), Point(-0.03, 0.05, 0.5)]) res = self.surface.get_closest_points(sites) self.assertIsInstance(res, Mesh) aae = numpy.testing.assert_almost_equal aae(res.lons, [0, -0.03], decimal=4) aae(res.lats, [-0.00081824, 0.04919223]) aae(res.depths, [1.0113781, 1.50822185]) def test_corner_is_closest(self): sites = Mesh.from_points_list( [Point(-0.11, 0.11), Point(0.14, -0.12, 10), Point(0.3, 0.2, 0.5), Point(-0.6, -0.6, 0.3)] ) res = self.surface.get_closest_points(sites) aae = numpy.testing.assert_almost_equal aae(res.lons, [-0.1, 0.1, 0.1, -0.1], decimal=4) aae(res.lats, [0.1, -0.1, 0.1, -0.1]) aae(res.depths, [2, 0, 2, 0], decimal=5) def test_top_or_bottom_edge_is_closest(self): sites = Mesh.from_points_list([Point(-0.04, -0.28, 0), Point(0.033, 0.15, 0)]) res = self.surface.get_closest_points(sites) aae = numpy.testing.assert_almost_equal aae(res.lons, [-0.04, 0.033], decimal=5) aae(res.lats, [-0.1, 0.1], decimal=5) aae(res.depths, [0, 2], decimal=2) def test_left_or_right_edge_is_closest(self): sites = Mesh.from_points_list([Point(-0.24, -0.08, 0.55), Point(0.17, 0.07, 0)]) res = self.surface.get_closest_points(sites) aae = numpy.testing.assert_almost_equal aae(res.lons, [-0.1, 0.1], decimal=5) aae(res.lats, [-0.08, 0.07], decimal=3) aae(res.depths, [0.20679306, 1.69185737]) def test_against_mesh_to_mesh(self): corners = [Point(2.6, 3.7, 20), Point(2.90102155, 3.99961567, 20), Point(3.2, 3.7, 75), Point(2.89905849, 3.40038407, 75)] surface = PlanarSurface(0.5, 45, 70, *corners) lons, lats = numpy.meshgrid(numpy.linspace(2.2, 3.6, 7), numpy.linspace(3.4, 4.2, 7)) sites = Mesh(lons, lats, depths=None) res1 = surface.get_closest_points(sites) res2 = super(PlanarSurface, surface).get_closest_points(sites) aae = numpy.testing.assert_almost_equal # precision up to ~1 km aae(res1.lons, res2.lons, decimal=2) aae(res1.lats, res2.lats, decimal=2) aae(res1.depths, res2.depths, decimal=0)
def test_point_above_surface(self): sites = Mesh.from_points_list([Point(0, 0), Point(-0.03, 0.05, 0.5)]) res = self.surface.get_closest_points(sites) self.assertIsInstance(res, Mesh) aae = numpy.testing.assert_almost_equal aae(res.lons, [0, -0.03], decimal=4) aae(res.lats, [-0.00081824, 0.04919223]) aae(res.depths, [1.0113781, 1.50822185])
def test_top_or_bottom_edge_is_closest(self): sites = Mesh.from_points_list([Point(-0.04, -0.28, 0), Point(0.033, 0.15, 0)]) res = self.surface.get_closest_points(sites) aae = numpy.testing.assert_almost_equal aae(res.lons, [-0.04, 0.033], decimal=5) aae(res.lats, [-0.1, 0.1], decimal=5) aae(res.depths, [0, 2], decimal=2)
def test_left_or_right_edge_is_closest(self): sites = Mesh.from_points_list([Point(-0.24, -0.08, 0.55), Point(0.17, 0.07, 0)]) res = self.surface.get_closest_points(sites) aae = numpy.testing.assert_almost_equal aae(res.lons, [-0.1, 0.1], decimal=5) aae(res.lats, [-0.08, 0.07], decimal=3) aae(res.depths, [0.20679306, 1.69185737])
def iter_ruptures(self, temporal_occurrence_model): """ See :meth:`nhlib.source.base.SeismicSource.iter_ruptures` for description of parameters and return value. Area sources are treated as a collection of point sources (see :mod:`nhlib.source.point`) with uniform parameters. Ruptures of area source are just a union of ruptures of those point sources. The actual positions of the implied point sources form a uniformly spaced mesh on the polygon. Polygon's method :meth:`~nhlib.geo.polygon.Polygon.discretize` is used for creating a mesh of points on the source's area. Constructor's parameter ``area_discretization`` is used as polygon's discretization spacing (not to be confused with rupture surface's mesh spacing which is as well provided to the constructor). The ruptures' occurrence rates are rescaled with respect to number of points the polygon discretizes to. """ polygon_mesh = self.polygon.discretize(self.area_discretization) rate_scaling_factor = 1.0 / len(polygon_mesh) # take the very first point of the polygon mesh [epicenter0] = polygon_mesh[0:1] # generate "reference ruptures" -- all the ruptures that have the same # epicenter location (first point of the polygon's mesh) but different # magnitudes, nodal planes, hypocenters' depths and occurrence rates ref_ruptures = [] for (mag, mag_occ_rate) in self.get_annual_occurrence_rates(): for (np_prob, np) in self.nodal_plane_distribution.data: for (hc_prob, hc_depth) in self.hypocenter_distribution.data: hypocenter = Point(latitude=epicenter0.latitude, longitude=epicenter0.longitude, depth=hc_depth) occurrence_rate = (mag_occ_rate * float(np_prob) * float(hc_prob)) occurrence_rate *= rate_scaling_factor surface = self._get_rupture_surface(mag, np, hypocenter) ref_ruptures.append((mag, np.rake, hc_depth, surface, occurrence_rate)) # for each of the epicenter positions generate as many ruptures # as we generated "reference" ones: new ruptures differ only # in hypocenter and surface location for epicenter in polygon_mesh: for mag, rake, hc_depth, surface, occ_rate in ref_ruptures: # translate the surface from first epicenter position # to the target one preserving it's geometry surface = surface.translate(epicenter0, epicenter) hypocenter = epicenter hypocenter.depth = hc_depth rupture = ProbabilisticRupture( mag, rake, self.tectonic_region_type, hypocenter, surface, type(self), occ_rate, temporal_occurrence_model ) yield rupture
def iter_ruptures(self, temporal_occurrence_model): """ See :meth:`nhlib.source.base.SeismicSource.iter_ruptures` for description of parameters and return value. Area sources are treated as a collection of point sources (see :mod:`nhlib.source.point`) with uniform parameters. Ruptures of area source are just a union of ruptures of those point sources. The actual positions of the implied point sources form a uniformly spaced mesh on the polygon. Polygon's method :meth:`~nhlib.geo.polygon.Polygon.discretize` is used for creating a mesh of points on the source's area. Constructor's parameter ``area_discretization`` is used as polygon's discretization spacing (not to be confused with rupture surface's mesh spacing which is as well provided to the constructor). The ruptures' occurrence rates are rescaled with respect to number of points the polygon discretizes to. """ polygon_mesh = self.polygon.discretize(self.area_discretization) rate_scaling_factor = 1.0 / len(polygon_mesh) # take the very first point of the polygon mesh [epicenter0] = polygon_mesh[0:1] # generate "reference ruptures" -- all the ruptures that have the same # epicenter location (first point of the polygon's mesh) but different # magnitudes, nodal planes, hypocenters' depths and occurrence rates ref_ruptures = [] for (mag, mag_occ_rate) in self.get_annual_occurrence_rates(): for (np_prob, np) in self.nodal_plane_distribution.data: for (hc_prob, hc_depth) in self.hypocenter_distribution.data: hypocenter = Point(latitude=epicenter0.latitude, longitude=epicenter0.longitude, depth=hc_depth) occurrence_rate = (mag_occ_rate * float(np_prob) * float(hc_prob)) occurrence_rate *= rate_scaling_factor surface = self._get_rupture_surface(mag, np, hypocenter) ref_ruptures.append((mag, np.rake, hc_depth, surface, occurrence_rate)) # for each of the epicenter positions generate as many ruptures # as we generated "reference" ones: new ruptures differ only # in hypocenter and surface location for epicenter in polygon_mesh: for mag, rake, hc_depth, surface, occ_rate in ref_ruptures: # translate the surface from first epicenter position # to the target one preserving it's geometry surface = surface.translate(epicenter0, epicenter) hypocenter = epicenter hypocenter.depth = hc_depth rupture = ProbabilisticRupture( mag, rake, self.tectonic_region_type, hypocenter, surface, occ_rate, temporal_occurrence_model ) yield rupture
def test_source_filter_filter_all_out(self): col = SiteCollection([ Site(Point(10, 10), 1, True, 2, 3), Site(Point(11, 12), 2, True, 2, 3), Site(Point(13, 14), 1, True, 2, 3) ]) for int_dist in (0, 1, 10, 100, 1000): filtered = self.source.filter_sites_by_distance_to_source( integration_distance=int_dist, sites=col) self.assertIs(filtered, None)
def test_corner_is_closest(self): sites = Mesh.from_points_list( [Point(-0.11, 0.11), Point(0.14, -0.12, 10), Point(0.3, 0.2, 0.5), Point(-0.6, -0.6, 0.3)] ) res = self.surface.get_closest_points(sites) aae = numpy.testing.assert_almost_equal aae(res.lons, [-0.1, 0.1, 0.1, -0.1], decimal=4) aae(res.lats, [0.1, -0.1, 0.1, -0.1]) aae(res.depths, [2, 0, 2, 0], decimal=5)
class JB2009LowerTriangleCorrelationMatrixTestCase(unittest.TestCase): SITECOL = SiteCollection([ Site(Point(2, -40), 1, True, 1, 1), Site(Point(2, -40.1), 1, True, 1, 1), Site(Point(2, -39.9), 1, True, 1, 1) ]) def test(self): cormo = JB2009CorrelationModel(vs30_clustering=False) lt = cormo.get_lower_triangle_correlation_matrix(self.SITECOL, PGA()) aaae(lt, [[1.0, 0.0, 0.0], [1.97514806e-02, 9.99804920e-01, 0.0], [1.97514806e-02, 5.42206860e-20, 9.99804920e-01]])
def test2(self): surface = PlanarSurface( 10, 20, 30, Point(3.9, 2.2, 10), Point(4.90402718, 3.19634248, 10), Point(5.9, 2.2, 90), Point(4.89746275, 1.20365263, 90) ) plons, plats, pdepths = [[4., 4.3, 3.1], [1.5, 1.7, 3.5], [11., 12., 13.]] dists, xx, yy = surface._project(plons, plats, pdepths) lons, lats, depths = surface._project_back(dists, xx, yy) aaae = numpy.testing.assert_array_almost_equal aaae(lons, plons) aaae(lats, plats) aaae(depths, pdepths)
def filter_sites_by_distance_to_rupture(cls, rupture, integration_distance, sites): """ Filter sites that are closer than rupture's projection radius plus integration distance along the great circle arc from rupture's epicenter location. Overrides the :meth:`base class' method <nhlib.source.base.SeismicSource.filter_sites_by_distance_to_rupture>`. """ rup_length, rup_width = rupture.surface.length, rupture.surface.width rup_width = rup_width * math.cos(math.radians(rupture.surface.dip)) radius = math.sqrt(rup_length ** 2 + rup_width ** 2) / 2.0 radius += integration_distance epicenter = Point(rupture.hypocenter.longitude, rupture.hypocenter.latitude) return sites.filter(epicenter.closer_than(sites.mesh, radius))
def filter_sites_by_distance_to_rupture(cls, rupture, integration_distance, sites): """ Filter sites that are closer than rupture's projection radius plus integration distance along the great circle arc from rupture's epicenter location. Overrides the :meth:`base class' method <nhlib.source.base.SeismicSource.filter_sites_by_distance_to_rupture>`. """ rup_length, rup_width = rupture.surface.length, rupture.surface.width rup_width = rup_width * math.cos(math.radians(rupture.surface.dip)) radius = math.sqrt(rup_length**2 + rup_width**2) / 2.0 radius += integration_distance epicenter = Point(rupture.hypocenter.longitude, rupture.hypocenter.latitude) return sites.filter(epicenter.closer_than(sites.mesh, radius))
def test_against_mesh_to_mesh(self): corners = [Point(2.6, 3.7, 20), Point(2.90102155, 3.99961567, 20), Point(3.2, 3.7, 75), Point(2.89905849, 3.40038407, 75)] surface = PlanarSurface(0.5, 45, 70, *corners) lons, lats = numpy.meshgrid(numpy.linspace(2.2, 3.6, 7), numpy.linspace(3.4, 4.2, 7)) sites = Mesh(lons, lats, depths=None) res1 = surface.get_closest_points(sites) res2 = super(PlanarSurface, surface).get_closest_points(sites) aae = numpy.testing.assert_almost_equal # precision up to ~1 km aae(res1.lons, res2.lons, decimal=2) aae(res1.lats, res2.lats, decimal=2) aae(res1.depths, res2.depths, decimal=0)
def test_occurrence_rate_rescaling(self): mfd = EvenlyDiscretizedMFD(min_mag=4, bin_width=1, occurrence_rates=[3]) polygon = Polygon([ Point(0, 0), Point(0, -0.2248), Point(-0.2248, -0.2248), Point(-0.2248, 0) ]) source = self.make_area_source(polygon, discretization=10, mfd=mfd) self.assertIs(source.mfd, mfd) ruptures = list(source.iter_ruptures(PoissonTOM(1))) self.assertEqual(len(ruptures), 4) for rupture in ruptures: self.assertNotEqual(rupture.occurrence_rate, 3) self.assertEqual(rupture.occurrence_rate, 3.0 / 4.0)
def test_edges_azimuths_cross_north_direction(self): self.assert_successfull_creation( 10, 150, 45, Point(-0.0001, 0, 1), Point(0.0001, -1, 1), Point(-0.0001, -1, 2), Point(0.0001, 0, 2) ) self.assert_successfull_creation( 1, 2, 3, Point(0.0001, 0, 1), Point(-0.0001, -1, 1), Point(0.0001, -1, 2), Point(-0.0001, 0, 2) )
def test_point_inside(self): corners = [Point(-1, -1, 1), Point(1, -1, 1), Point(1, 1, 2), Point(-1, 1, 2)] surface = PlanarSurface(10, 90, 45, *corners) sites = Mesh.from_points_list([Point(0, 0), Point(0, 0, 20), Point(0.1, 0.3)]) dists = surface.get_joyner_boore_distance(sites) expected_dists = [0] * 3 self.assertTrue(numpy.allclose(dists, expected_dists))
def _make_source(self, mfd, aspect_ratio, rupture_mesh_spacing, edges): source_id = name = 'test-source' trt = self.TRT rake = self.RAKE magnitude_scaling_relationship = PeerMSR() rupture_aspect_ratio = aspect_ratio edges = [Line([Point(*coords) for coords in edge]) for edge in edges] return ComplexFaultSource(source_id, name, trt, mfd, rupture_mesh_spacing, magnitude_scaling_relationship, rupture_aspect_ratio, edges, rake)
def _get_top_edge_centroid(self): """ Overrides :meth:`superclass' method <nhlib.geo.surface.base.BaseSurface._get_top_edge_centroid>` in order to avoid creating a mesh. """ lon, lat = geo_utils.get_middle_point( self.corner_lons[0], self.corner_lats[0], self.corner_lons[1], self.corner_lats[1] ) return Point(lon, lat, self.corner_depths[0])
class PointSourceRuptureFilterTestCase(unittest.TestCase): SITES = PointSourceSourceFilterTestCase.SITES def setUp(self): super(PointSourceRuptureFilterTestCase, self).setUp() self.hypocenter = Point(2, 0, 50) self.sitecol = SiteCollection(self.SITES) def _make_rupture(self, width, length, dip): mid_left = self.hypocenter.point_at(length / 2.0, 0, azimuth=270) mid_right = self.hypocenter.point_at(length / 2.0, 0, azimuth=90) hwidth = width * numpy.cos(numpy.radians(dip)) / 2.0 vwidth = width * numpy.sin(numpy.radians(dip)) / 2.0 top_left = mid_left.point_at(hwidth, -vwidth, azimuth=0) bottom_left = mid_left.point_at(hwidth, vwidth, azimuth=180) top_right = mid_right.point_at(hwidth, -vwidth, azimuth=0) bottom_right = mid_right.point_at(hwidth, vwidth, azimuth=180) surface = PlanarSurface(1, 2, dip, top_left, top_right, bottom_right, bottom_left) rupture = ProbabilisticRupture( mag=1, rake=2, tectonic_region_type=TRT.VOLCANIC, hypocenter=self.hypocenter, surface=surface, source_typology=PointSource, occurrence_rate=3, temporal_occurrence_model=PoissonTOM(1) ) return rupture def test_zero_integration_distance(self): rup = self._make_rupture(10, 15, 45) # 8 km radius filtered = PointSource.filter_sites_by_distance_to_rupture( rup, integration_distance=0, sites=self.sitecol ) self.assertIsInstance(filtered, SiteCollection) self.assertIsNot(filtered, self.sitecol) numpy.testing.assert_array_equal(filtered.indices, [0]) numpy.testing.assert_array_equal(filtered.vs30, [0.1]) rup = self._make_rupture(50, 30, 90) # 14.8 km radius filtered = PointSource.filter_sites_by_distance_to_rupture( rup, integration_distance=0, sites=self.sitecol ) numpy.testing.assert_array_equal(filtered.indices, [0, 1]) def test_495_km(self): rup = self._make_rupture(5, 8, 5) # 4.68 km radius filtered = PointSource.filter_sites_by_distance_to_rupture( rup, integration_distance=495, sites=self.sitecol ) numpy.testing.assert_array_equal(filtered.indices, [0, 1, 2, 3]) rup = self._make_rupture(7, 10, 30) # 5.8 km radius filtered = PointSource.filter_sites_by_distance_to_rupture( rup, integration_distance=495, sites=self.sitecol ) self.assertIs(filtered.indices, None) self.assertIs(filtered, self.sitecol) def test_filter_all_out(self): rup = self._make_rupture(50, 80, 9) # 46.64 km radius self.hypocenter.longitude = 11.515 for int_dist in (0, 1, 10, 100, 1000): filtered = PointSource.filter_sites_by_distance_to_rupture( rup, integration_distance=int_dist, sites=self.sitecol ) self.assertIs(filtered, None)
def setUp(self): super(PointSourceRuptureFilterTestCase, self).setUp() self.hypocenter = Point(2, 0, 50) self.sitecol = SiteCollection(self.SITES)