Exemplo n.º 1
0
def create_analyze_from_imgdata(data,
                                out,
                                pix_x,
                                pix_y,
                                pix_z,
                                tx,
                                ty,
                                tz,
                                data_type="fl"):

    if data_type == "1b":
        dtype = np.int8
    elif data_type == "2b":
        dtype = np.int16
    elif data_type == "db":
        dtype = np.float64
    else:
        dtype = np.float32

    hdr1 = nib.AnalyzeHeader()
    hdr1.set_data_dtype(dtype)
    hdr1.set_data_shape((pix_x, pix_y, pix_z))
    hdr1.set_zooms((tx, ty, tz))

    f = open(data, 'rb')

    img_data = hdr1.raw_data_from_fileobj(f)

    analyze_img = nib.AnalyzeImage(img_data, hdr1.get_base_affine(), hdr1)

    nib.save(analyze_img, out)
Exemplo n.º 2
0
def operate_single_image(input_image, operation, factor, output_image,
                         logfile):
    """
    Given an input image, multiply or divide it by a numerical factor
    saving the result as output_image
    :param input_image: image base operation on
    :param operation: 1 = multiply, 2 = divide
    :param factor: operation factor
    :param output_image: output image file
    :return:
    """

    img = nib.load(input_image)
    data = img.get_data()[:, :, :]
    data = np.nan_to_num(data)

    if operation == 'mult':
        data = data * float(factor)
    elif operation == 'div':
        data = data / float(factor)
    else:
        message = "Error! Invalid operation: " + str(operation)
        print(message)
        log_message(logfile, message, 'error')

    hdr1 = nib.AnalyzeHeader()
    hdr1.set_data_dtype(img.get_data_dtype())
    hdr1.set_data_shape(img.shape)
    hdr1.set_zooms(abs(np.diag(img.affine))[0:3])

    analyze_img = nib.AnalyzeImage(data, hdr1.get_base_affine(), hdr1)

    nib.save(analyze_img, output_image)
Exemplo n.º 3
0
 def write_analyze(im,filepath):
     id1=np.swapaxes(im.img_data,0,2)
     ps=im.params.pixel_size
     hdr=nibabel.AnalyzeHeader()
     hdr.set_data_shape(id1.shape)
     hdr.set_data_dtype(id1.dtype)
     hdr.set_zooms([ps,ps,ps,im.params.frame_duration[0]])
     analyze_img=nibabel.AnalyzeImage(id1,None,hdr)
     print('writing Analyze 7.5 image: '+filepath)
     analyze_img.to_filename(filepath)
Exemplo n.º 4
0
def make_random_image(filename=None,
                      dims=(10, 10, 10),
                      xform=None,
                      imgtype=1,
                      pixdims=None,
                      dtype=np.float32):
    """Convenience function which makes an image containing random data.
    Saves and returns the nibabel object.

    imgtype == 0: ANALYZE
    imgtype == 1: NIFTI1
    imgtype == 2: NIFTI2
    """

    if   imgtype == 0: hdr = nib.AnalyzeHeader()
    elif imgtype == 1: hdr = nib.Nifti1Header()
    elif imgtype == 2: hdr = nib.Nifti2Header()

    if pixdims is None:
        pixdims = [1] * len(dims)

    pixdims = pixdims[:len(dims)]
    zooms   = [abs(p) for p in pixdims]

    hdr.set_data_dtype(dtype)
    hdr.set_data_shape(dims)
    hdr.set_zooms(zooms)

    if xform is None:
        xform = np.eye(4)
        for i, p in enumerate(pixdims[:3]):
            xform[i, i] = p

    data  = np.array(np.random.random(dims) * 100, dtype=dtype)

    if   imgtype == 0: img = nib.AnalyzeImage(data, xform, hdr)
    elif imgtype == 1: img = nib.Nifti1Image( data, xform, hdr)
    elif imgtype == 2: img = nib.Nifti2Image( data, xform, hdr)

    if filename is not None:

        if op.splitext(filename)[1] == '':
            if imgtype == 0: filename = '{}.img'.format(filename)
            else:            filename = '{}.nii'.format(filename)

        nib.save(img, filename)

    return img
Exemplo n.º 5
0
def operate_images_analyze(image1, image2, out_image, operation='mult'):
    """
    Given the input images, calculate the multiplication image or the ratio between them
    :param image1: string, path to the first image
    :param image2: string, path to the second image
    :param operation: string, multi (default) for multiplication divid for division
    :param out_image: string (optional), path to the output image
    :return:
    """
    img1, data1 = nib_load(image1)
    img2, data2 = nib_load(image2)

    # TODO CHECK IF NEGATIVE VALUES NEED TO BE REMOVED
    # Remove NaN and negative values
    data1 = np.nan_to_num(data1)
    data2 = np.nan_to_num(data2)

    if operation == 'mult':
        res_data = data1 * data2
    elif operation == 'div':
        res_data = data1 / data2
    elif operation == 'sum':
        res_data = data1 + data2
    elif operation == 'diff':
        res_data = data1 - data2
    else:
        message = 'Error! Unknown operation: ' + str(operation)
        raise TypeError(message)

    hdr1 = nib.AnalyzeHeader()
    hdr1.set_data_dtype(img1.get_data_dtype())
    hdr1.set_data_shape(img1.shape)
    hdr1.set_zooms(abs(np.diag(img1.affine))[0:3])

    analyze_img = nib.AnalyzeImage(res_data, hdr1.get_base_affine(), hdr1)

    nib.save(analyze_img, out_image)