Exemplo n.º 1
0
    def test_anat_reg_report(self, execdir):

        subject_id = "subj01"
        data_dir = execdir.mkdir("data")
        mri_dir = data_dir.mkdir(subject_id).mkdir("mri")

        shape = (12, 8, 4)
        affine = np.eye(4)

        cost_file = "cost.txt"
        cost_array = np.random.uniform(0, 1, 5)
        np.savetxt(cost_file, cost_array)

        in_data = np.random.normal(100, 5, shape)
        in_file = "func.nii.gz"
        nib.save(nib.Nifti1Image(in_data, affine), in_file)

        wm_data = np.random.randint(0, 2, shape).astype("uint8")
        wm_file = mri_dir.join("wm.mgz")
        nib.save(nib.MGHImage(wm_data, affine), str(wm_file))

        aseg_data = np.random.randint(0, 5, shape).astype("uint8")
        aseg_file = mri_dir.join("aseg.mgz")
        nib.save(nib.MGHImage(aseg_data, affine), str(aseg_file))

        out = preproc.AnatRegReport(
            subject_id=subject_id,
            data_dir=data_dir,
            in_file=in_file,
            cost_file=cost_file,
        ).run().outputs

        assert out.out_file == execdir.join("reg.png")
        assert op.exists(out.out_file)
Exemplo n.º 2
0
    def save_weights_as_datasurface(self, weights, output_dir):
        import os

        import nibabel as nib
        import numpy as np

        if self._images is None:
            self.get_images()

        sample = nib.load(self._images[0][0])

        infinite_norm = np.max(np.abs(weights))

        left_hemi_data = np.atleast_3d(
            np.divide(weights[:np.int(weights.size / 2)], infinite_norm))
        left_hemi_mgh = nib.MGHImage(left_hemi_data,
                                     affine=sample.affine,
                                     header=sample.header)
        nib.save(left_hemi_mgh, os.path.join(output_dir, "weights_lh.mgh"))

        right_hemi_data = np.atleast_3d(
            np.divide(weights[np.int(weights.size / 2):], infinite_norm))
        right_hemi_mgh = nib.MGHImage(right_hemi_data,
                                      affine=sample.affine,
                                      header=sample.header)
        nib.save(right_hemi_mgh, os.path.join(output_dir, "weights_rh.mgh"))
Exemplo n.º 3
0
def freesurfer(lyman_info):

    subject = "subj01"
    mri_dir = lyman_info["data_dir"].join(subject).join("mri")

    seed = sum(map(ord, "freesurfer"))
    rs = np.random.RandomState(seed)
    affine = np.eye(4)
    vol_shape = lyman_info["vol_shape"]

    mask = rs.choice([0, 1], vol_shape, p=[.2, .8])

    norm_data = rs.randint(0, 110, vol_shape) * mask
    norm_file = str(mri_dir.join("norm.mgz"))
    nib.save(nib.MGHImage(norm_data.astype("uint8"), affine), norm_file)

    wmparc_vals = [1000, 10, 11, 16, 8, 3000, 5001, 7, 46, 4]
    wmparc_data = rs.choice(wmparc_vals, vol_shape) * mask
    wmparc_file = str(mri_dir.join("wmparc.mgz"))
    nib.save(nib.MGHImage(wmparc_data.astype("int16"), affine), wmparc_file)

    lyman_info.update(
        subject=subject,
        norm_file=norm_file,
        wmparc_file=wmparc_file,
    )
    return lyman_info
Exemplo n.º 4
0
def mric_solve(segmented, target, TR,TE, alpha, save , *args):

	import nibabel as nb
	import numpy as np
	
	#Flatten array

	fseg= nb.load(segmented).get_data().reshape(1,-1)[0]
	
	rI = np.zeros(len(fseg))


	vox2ras = nb.load(target).get_header().get_vox2ras()

	init  = nb.load(target).get_data().reshape(1,-1)[0].astype("float32")
	#init[init==0]=0.1 # To avoid warnings
	solver = np.vectorize(mric_brentq)

	G =  np.zeros(len(fseg))
	k1 =TR*3.2
	k2 =TE*3.9 
 	   
	G[fseg>0] =   np.exp(-TR/1.084)          #white  assume all white 
	G[fseg>999] =      np.exp(-TR/1.820)         #grey
        G[fseg==4]  = 0  # np.exp(-TR/20.000) 
	G[fseg==43] =  0 #   np.exp(-TR/20.000)      #ve 


	for j in range(len(args)):
		i = args[j]

		temp=nb.load(i).get_data().reshape(1,-1)[0].astype("float32")
	    
		rI[fseg>0] = temp[fseg>0]/init[fseg>0]
		

		
		

		rI[np.isnan(rI)] = 1 # can be included 
	

		

		temp2 = np.array(solver(k1,k2,G,alpha,rI)).reshape(256,256,256)
		img = nb.MGHImage(temp2.astype("float32"),vox2ras)
		nb.save(img,save+str(j)+".mgz")


		rI2 = temp/init
		rI2[np.isnan(rI2)] = 1 #
		temp3 = rI2.reshape(256,256,256)
		img2 = nb.MGHImage(temp3.astype("float32"),vox2ras)
		nb.save(img2,"testIR"+str(j)+".mgz")
Exemplo n.º 5
0
def main(subject, bids_folder):

    fn = op.join(bids_folder, 'derivatives', 'freesurfer', '{fs_subject}',
                 'surf', '{hemi}.{label}.mgz')

    if subject == 'fsaverage':
        for hemi in ['lh', 'rh']:
            fs_subject = subject
            im = nb.load(
                fn.format(hemi=hemi,
                          label='wang2015_atlas',
                          fs_subject=fs_subject))
            prob_mask = surface.load_surf_data(
                fn.format(hemi=hemi,
                          label='wang2015_atlas',
                          fs_subject=fs_subject))
            # print(prob_mask, op.exists(prob_mask))
            label_mask = np.in1d(prob_mask, range(18, 24)).astype(np.int16)

            new_im = nb.MGHImage(label_mask, im.affine, im.header)
            new_im.to_filename(
                fn.format(hemi=hemi, label='wang15_ips',
                          fs_subject=fs_subject))
    else:
        fs_subject = f'sub-{subject}'
        for hemi in ['lh', 'rh']:

            pts, poly = cortex.db.get_surf(f'sub-{subject}',
                                           'pia',
                                           hemisphere=hemi)
            surf = cortex.polyutils.Surface(pts, poly)

            im = nb.load(
                fn.format(hemi=hemi,
                          label='wang15_fplbl',
                          fs_subject=fs_subject))
            prob_mask = surface.load_surf_data(
                fn.format(hemi=hemi,
                          label='wang15_fplbl',
                          fs_subject=fs_subject))
            # print(prob_mask, op.exists(prob_mask))
            label_mask = (prob_mask[18:24] > 0.05).any(0).astype(np.int16)

            ix_mask = np.where(label_mask)[0]
            ss = surf.create_subsurface(label_mask.astype(np.bool))
            label_mask = ss.subsurface_vertex_mask

            print(len(pts), len(label_mask))

            new_im = nb.MGHImage(label_mask, im.affine, im.header)
            new_im.to_filename(
                fn.format(hemi=hemi, label='wang15_ips',
                          fs_subject=fs_subject))
Exemplo n.º 6
0
def _reorient_image(img, axcodes='RAS'):
    """Reorient an image to a given orientation.

    Parameters
    ----------
    img : instance of SpatialImage
        The MRI image.
    axcodes : tuple | str
        The axis codes specifying the orientation, e.g. "RAS".
        See :func:`nibabel.orientations.aff2axcodes`.

    Returns
    -------
    img_data : ndarray
        The reoriented image data.
    vox_ras_t : ndarray
        The new transform from the new voxels to surface RAS.

    Notes
    -----
    .. versionadded:: 0.24
    """
    import nibabel as nib
    orig_data = np.array(img.dataobj).astype(np.float32)
    # reorient data to RAS
    ornt = nib.orientations.axcodes2ornt(
        nib.orientations.aff2axcodes(img.affine)).astype(int)
    ras_ornt = nib.orientations.axcodes2ornt(axcodes)
    ornt_trans = nib.orientations.ornt_transform(ornt, ras_ornt)
    img_data = nib.orientations.apply_orientation(orig_data, ornt_trans)
    orig_mgh = nib.MGHImage(orig_data, img.affine)
    aff_trans = nib.orientations.inv_ornt_aff(ornt_trans, img.shape)
    vox_ras_t = np.dot(orig_mgh.header.get_vox2ras_tkr(), aff_trans)
    return img_data, vox_ras_t
Exemplo n.º 7
0
def save_image(img_array, affine_info, header_info, save_as):
    """
    Save an image (nibabel MGHImage), according to the desired output file format.
    Supported formats are defined in supported_output_file_formats.

    :param numpy.ndarray img_array: an array containing image data
    :param numpy.ndarray affine_info: image affine information
    :param nibabel.freesurfer.mghformat.MGHHeader header_info: image header information
    :param str save_as: name under which to save prediction; this determines output file format

    :return None: saves predictions to save_as
    """

    assert any(save_as.endswith(file_ext) for file_ext in supported_output_file_formats), \
            'Output filename does not contain a supported file format (' + ', '.join(file_ext for file_ext in supported_output_file_formats) + ')!'

    mgh_img = None
    if save_as.endswith('mgz'):
        mgh_img = nib.MGHImage(img_array, affine_info, header_info)
    elif any(save_as.endswith(file_ext) for file_ext in ['nii', 'nii.gz']):
        mgh_img = nib.nifti1.Nifti1Pair(img_array, affine_info, header_info)

    if any(save_as.endswith(file_ext) for file_ext in ['mgz', 'nii']):
        nib.save(mgh_img, save_as)
    elif save_as.endswith('nii.gz'):
        ## For correct outputs, nii.gz files should be saved using the nifti1 sub-module's save():
        nib.nifti1.save(mgh_img, save_as)
Exemplo n.º 8
0
def _fake_CT_coords(skull_size=5, contact_size=2):
    """Make somewhat realistic CT data with contacts."""
    import nibabel as nib
    brain = nib.load(op.join(subjects_dir, subject, 'mri', 'brain.mgz'))
    verts = mne.read_surface(
        op.join(subjects_dir, subject, 'bem', 'outer_skull.surf'))[0]
    verts = apply_trans(np.linalg.inv(brain.header.get_vox2ras_tkr()), verts)
    x, y, z = np.array(brain.shape).astype(int) // 2
    coords = [(x, y - 14, z), (x - 10, y - 15, z), (x - 20, y - 16, z + 1),
              (x - 30, y - 16, z + 1)]
    center = np.array(brain.shape) / 2
    # make image
    np.random.seed(99)
    ct_data = np.random.random(brain.shape).astype(np.float32) * 100
    # make skull
    for vert in verts:
        x, y, z = np.round(vert).astype(int)
        ct_data[slice(x - skull_size, x + skull_size + 1),
                slice(y - skull_size, y + skull_size + 1),
                slice(z - skull_size, z + skull_size + 1)] = 1000
    # add electrode with contacts
    for (x, y, z) in coords:
        # make sure not in skull
        assert np.linalg.norm(center - np.array((x, y, z))) < 50
        ct_data[slice(x - contact_size, x + contact_size + 1),
                slice(y - contact_size, y + contact_size + 1),
                slice(z - contact_size, z + contact_size + 1)] = \
            1000 - np.linalg.norm(np.array(np.meshgrid(
                *[range(-contact_size, contact_size + 1)] * 3)), axis=0)
    ct = nib.MGHImage(ct_data, brain.affine)
    coords = apply_trans(ct.header.get_vox2ras_tkr(), np.array(coords))
    return ct, coords
Exemplo n.º 9
0
def epi_to_surf_xfm(epi_fname, reg_fname):
    """Obtain a transformation from epi voxels -> Freesurfer surf coords.

    Parameters
    ----------
    epi_fname : string
        Filename pointing at image defining the epi space.
    reg_fname : string
        Filename pointing at registration file (from bbregister) that maps
        ``epi_img_fname`` to the Freesurfer anatomy.

    Returns
    -------
    xfm : 4 x 4 numpy array
        Transformation matrix that can be applied to surf coords.

    """
    # Load the Freesurfer "tkreg" style transform file
    # Confusingly, this file actually encodes the anat-to-func transform
    anat2func_xfm = np.genfromtxt(reg_fname, skip_header=4, skip_footer=1)
    func2anat_xfm = np.linalg.inv(anat2func_xfm)

    # Get a tkreg-compatibile mapping from IJK to RAS
    epi_img = nib.load(epi_fname)
    mgh_img = nib.MGHImage(np.zeros(epi_img.shape[:3]), epi_img.get_affine(),
                           epi_img.get_header())
    vox2ras_tkr = mgh_img.get_header().get_vox2ras_tkr()

    # Combine the two transformations
    xfm = np.dot(func2anat_xfm, vox2ras_tkr)

    return xfm
Exemplo n.º 10
0
def asmgh(infile):
    outfile = op.basename(fslimage.removeExt(infile))
    outfile = outfile + '.mgh'
    inimg   = fslimage.Image(infile)
    outimg  = nib.MGHImage(inimg.data, inimg.voxToWorldMat)
    outimg.to_filename(outfile)
    return outfile
Exemplo n.º 11
0
def test_slice_browser_io(_slice_browser):
    """Test the input/output of the slice browser GUI."""
    import nibabel as nib
    with pytest.raises(ValueError, match='Base image is not aligned to MRI'):
        _slice_browser(nib.MGHImage(
            np.ones((96, 96, 96), dtype=np.float32), np.eye(4)),
            subject=subject, subjects_dir=subjects_dir)
Exemplo n.º 12
0
def mgh_from_sitk(sitk_img, orig_mgh_header=None):
    if orig_mgh_header:
        h1 = MGHHeader.from_header(orig_mgh_header)
    else:
        h1 = MGHHeader()
    # get voxels sizes and set zooms (=delta in h1 header)
    spacing = sitk_img.GetSpacing()
    h1.set_zooms(np.asarray(spacing))
    # Get direction cosines from sitk image, reshape to 3x3 Matrix
    direction = np.asarray(sitk_img.GetDirection()).reshape(
        3, 3, order="F") * [-1, -1, 1]
    h1["Mdc"] = direction
    # compute affine
    origin = np.asarray(sitk_img.GetOrigin()).reshape(3, 1) * [[-1], [-1], [1]]
    affine = np.vstack(
        [np.hstack([h1['Mdc'].T * h1["delta"], origin]), [0, 0, 0, 1]])
    # get dims and calculate and set new image center in world coords
    dims = np.array(sitk_img.GetSize())
    if dims.size == 3:
        dims = np.hstack((dims, [1]))
    h1['dims'] = dims
    h1['Pxyz_c'] = affine.dot(np.hstack((dims[:3] / 2.0, [1])))[:3]
    # swap axes as data is stored differently between sITK and Nibabel
    data = np.swapaxes(sitk.GetArrayFromImage(sitk_img), 0, 2)
    # assemble MGHImage from header, image data and affine
    mgh_img = nib.MGHImage(data, affine, h1)
    return mgh_img
Exemplo n.º 13
0
def mric_RI(save, *args):

    import numpy as np
    import nibabel as nb

    target = args[0][0]

    vox2ras = nb.load(target).get_header().get_vox2ras()

    idata = nb.load(target).get_data()
    init = idata.reshape(1, -1)[0].astype("float32")

    for j in range(1, len(args[0])):
        i = args[0][j]

        temp = nb.load(i).get_data().reshape(1, -1)[0].astype("float32")

        rI2 = temp / init
        rI2[np.isnan(rI2)] = 1  #
        temp3 = rI2.reshape(idata.shape)
        img2 = nb.MGHImage(temp3.astype("float32"), vox2ras)

        print save + "/" + str(i).split("/")[-1]

        nb.save(img2, save + "/" + str(i).split("/")[-1])
Exemplo n.º 14
0
 def write(self, outfile):
     log.info('Writing output to ' + outfile)
     if outfile.endswith('.nii') or outfile.endswith('.nii.gz'):
         img = nib.Nifti1Image(self.out, self.m_rcs2ras)
     if outfile.endswith('.mgh') or outfile.endswith('.mgz'):
         self.out = self.out.astype(np.float32)
         img = nib.MGHImage(self.out, self.m_rcs2ras)
     nib.save(img, outfile)
Exemplo n.º 15
0
def save_mgh(filename, array, demo):
    """ save mgh file using nibabel and imported demo mgh file"""
    mmap = np.memmap('/tmp/tmp',
                     dtype='float32',
                     mode='w+',
                     shape=demo.get_data().shape)
    mmap[:, 0, 0] = array[:]
    output = nb.MGHImage(mmap, demo.affine, demo.header)
    nb.save(output, filename)
Exemplo n.º 16
0
def test_ieeg_elec_locate_gui_io(_locate_ieeg):
    """Test the input/output of the intracranial location GUI."""
    import nibabel as nib
    info = mne.create_info([], 1000)
    aligned_ct = nib.MGHImage(np.zeros((256, 256, 256), dtype=np.float32),
                              np.eye(4))
    trans = mne.transforms.Transform('head', 'mri')
    with pytest.raises(ValueError,
                       match='No channels found in `info` to locate'):
        _locate_ieeg(info, trans, aligned_ct, subject, subjects_dir)
Exemplo n.º 17
0
def freesurfer(lyman_info):

    subject = "subj01"
    mri_dir = lyman_info["data_dir"].join(subject).join("mri")
    label_dir = lyman_info["data_dir"].join(subject).join("label")

    seed = sum(map(ord, "freesurfer"))
    rs = np.random.RandomState(seed)
    affine = np.eye(4)
    vol_shape = lyman_info["vol_shape"]

    mask = rs.choice([0, 1], vol_shape, p=[.2, .8])

    norm_data = rs.randint(0, 110, vol_shape) * mask
    norm_file = str(mri_dir.join("norm.mgz"))
    nib.save(nib.MGHImage(norm_data.astype("uint8"), affine), norm_file)

    orig_file = str(mri_dir.join("orig.mgz"))
    nib.save(nib.MGHImage(norm_data.astype("uint8"), affine), orig_file)

    wmparc_vals = [1000, 10, 11, 16, 8, 3000, 5001, 7, 46, 4]
    wmparc_data = rs.choice(wmparc_vals, vol_shape) * mask
    wmparc_file = str(mri_dir.join("wmparc.mgz"))
    nib.save(nib.MGHImage(wmparc_data.astype("int16"), affine), wmparc_file)

    n = 10
    fmt = ["%d", "%.3f", "%.3f", "%.3f", "%.9f"]
    label_data = np.c_[np.arange(n), np.zeros((n, 4))]
    label_files = {}
    for hemi in ["lh", "rh"]:
        fname = str(label_dir.join("{}.cortex.label".format(hemi)))
        label_files[hemi] = fname
        np.savetxt(fname, label_data, fmt=fmt, header=str(n))

    lyman_info.update(
        subject=subject,
        norm_file=norm_file,
        orig_file=orig_file,
        wmparc_file=wmparc_file,
        label_files=label_files,
    )
    return lyman_info
Exemplo n.º 18
0
 def write(self, outfile):
     log.info('Writing output to ' + outfile)
     # if out datatype is float64 make it float32
     if self.out.dtype == np.float64:
         self.out = self.out.astype(np.float32)
     if outfile.endswith('.nii') or outfile.endswith('.nii.gz'):
         img = nib.Nifti1Image(self.out, self.m_rcs2ras)
     if outfile.endswith('.mgh') or outfile.endswith('.mgz'):
         #self.out = self.out.astype(self.vol.dtype)
         img = nib.MGHImage(self.out, self.m_rcs2ras)
     nib.save(img, outfile)
Exemplo n.º 19
0
def _ensure_image_in_surface_RAS(image, subject, subjects_dir):
    """Check if the image is in Freesurfer surface RAS space."""
    import nibabel as nib
    if not isinstance(image, nib.spatialimages.SpatialImage):
        image = nib.load(image)
    image = nib.MGHImage(image.dataobj.astype(np.float32), image.affine)
    fs_img = nib.load(op.join(subjects_dir, subject, 'mri', 'brain.mgz'))
    if not np.allclose(image.affine, fs_img.affine, atol=1e-6):
        raise RuntimeError('The `image` is not aligned to Freesurfer '
                           'surface RAS space. This space is required as '
                           'it is the space where the anatomical '
                           'segmentation and reconstructed surfaces are')
    return image  # returns MGH image for header
Exemplo n.º 20
0
    def save_weights_as_datasurface(self, weights, output_dir):
        import numpy as np
        import nibabel as nib
        import os

        if self._images is None:
            self.get_images()

        sample = nib.load(self._images[0][0])

        left_hemi_data = np.atleast_3d(weights[:weights.size / 2])
        left_hemi_mgh = nib.MGHImage(left_hemi_data,
                                     affine=sample.affine,
                                     header=sample.header)
        nib.save(left_hemi_mgh, os.path.join(output_dir, 'weights_lh.mgh'))

        right_hemi_data = np.atleast_3d(weights[weights.size / 2:])
        right_hemi_mgh = nib.MGHImage(right_hemi_data,
                                      affine=sample.affine,
                                      header=sample.header)
        nib.save(right_hemi_mgh, os.path.join(output_dir, 'weights_rh.mgh'))
        pass
Exemplo n.º 21
0
def predict_segmentation(input_arr, model_name, header):
    batch_size = 10
    count = 0
    result = []
    model = torch.load('api/pytorch_models/' + model_name + '.model')

    input_arr = input_arr.reshape(
        (-1, 1, input_arr.shape[-2], input_arr.shape[-1]))
    if model_name == "quicknat":
        input_arr = np.transpose(input_arr, [0, 1, 3, 2])
    while count <= input_arr.shape[0]:
        last_index = count + batch_size - 1

        if last_index > input_arr.shape[0]:
            last_index = input_arr.shape[0]
        out = model(
            Variable(torch.Tensor(input_arr[count:last_index]).cuda(),
                     volatile=True))
        result.append(out)
        count += batch_size - 1
    result = torch.cat(result)
    result = F.softmax(result, dim=1)
    max_val, idx = torch.max(result, 1)
    idx = idx.data.cpu().numpy()

    color_map = [
        label for label in SEG_LABELS_LIST[model_name] if label["id"] != 0
    ]
    stats = {'color_map': color_map}
    if model_name == "quicknat":
        idx = np.transpose(idx, [0, 2, 1])
        indexes, counts = np.unique(np.ravel(idx), return_counts=True)
        indexes = indexes[1:]
        counts = counts[1:]
        indexes = [str(i) for i in indexes]
        counts = [str(c) for c in counts]
        stats['volume_estimates'] = dict(zip(indexes, counts))
        feature_matrix = np.loadtxt('api/age_estimation/feature_matrix.csv')
        predicted_age, uncertainty = estimate_age(
            np.expand_dims(feature_matrix[1],
                           axis=0), 'api/age_estimation/gpr_model.sav',
            'api/age_estimation/gpr_scaler.sav')
        stats['predicted_age'] = np.round(predicted_age[0], 2)
        stats['predicted_age_uncertainty'] = np.round(uncertainty[0], 2)

    # Create a new file
    nifti_img = nib.MGHImage(idx, np.eye(4), header=header)

    result = np.array([label_img_to_rgb(frame, model_name) for frame in idx])
    return {'result': result, 'stats': stats, 'nifti_img': nifti_img}
Exemplo n.º 22
0
def conform(img, order=1):
    """
    Python version of mri_convert -c, which turns image intensity values into UCHAR, reslices images to standard position, fills up
    slices to standard 256x256x256 format and enforces 1 mm isotropic voxel sizes.

    Difference to mri_convert -c is that we first interpolate (float image), and then rescale to uchar. mri_convert is
    doing it the other way. However, we compute the scale factor from the input to be more similar again

    :param nibabel.MGHImage img: loaded source image
    :param int order: interpolation order (0=nearest,1=linear(default),2=quadratic,3=cubic)
    :return:nibabel.MGHImage new_img: conformed image
    """
    from nibabel.freesurfer.mghformat import MGHHeader

    cwidth = 256
    csize = 1
    h1 = MGHHeader.from_header(
        img.header)  # may copy some parameters if input was MGH format

    h1.set_data_shape([cwidth, cwidth, cwidth, 1])
    h1.set_zooms([csize, csize, csize])
    h1['Mdc'] = [[-1, 0, 0], [0, 0, -1], [0, 1, 0]]
    h1['fov'] = cwidth
    h1['Pxyz_c'] = img.affine.dot(
        np.hstack((np.array(img.shape[:3]) / 2.0, [1])))[:3]

    # from_header does not compute Pxyz_c (and probably others) when importing from nii
    # Pxyz is the center of the image in world coords

    # get scale for conversion on original input before mapping to be more similar to mri_convert
    src_min, scale = getscale(img.get_data(), 0, 255)

    mapped_data = map_image(img,
                            h1.get_affine(),
                            h1.get_data_shape(),
                            order=order)
    # print("max: "+format(np.max(mapped_data)))

    if not img.get_data_dtype() == np.dtype(np.uint8):

        if np.max(mapped_data) > 255:
            mapped_data = scalecrop(mapped_data, 0, 255, src_min, scale)

    new_data = np.uint8(np.rint(mapped_data))
    new_img = nib.MGHImage(new_data, h1.get_affine(), h1)

    # make sure we store uchar
    new_img.set_data_dtype(np.uint8)

    return new_img
Exemplo n.º 23
0
    def synthesize_image(self, in_img_file, out_img_filename, step_size):
        in_img = nib.load(in_img_file)
        (in_patches, in_indices, padded_img_size) = self.feature_generator.extract_patches(in_img_file, intensity_threshold=0,
                                                                         step_size=step_size, is_label_img=False,
                                                                         indices=None)
        out_patches = self.model.predict(in_patches)
        patch_crop_size = [1, 1, 1]  # should be filter_size/2

        out_img_data, count_img_data = self.feature_generator.build_image_from_patches(out_patches, in_indices,
                                                                     padded_img_size, patch_crop_size)
        out_img_data = intensity_standardize_utils.wm_peak_normalize(out_img_data)
        out_img_data[out_img_data > 255] = 255

        out_img = nib.MGHImage(out_img_data, in_img.affine, in_img.header)
        nib.save(out_img, out_img_filename)
Exemplo n.º 24
0
def avgerage_brainimg_pr(projectdir,
                         sessidlist,
                         funcname,
                         analysis_name,
                         runlist,
                         savepath,
                         outfmt="mgz"):
    """Average result per run after doing zscore, doing to all sessions.

    Parameters
    ----------
        projectdir: name of where your session data placed, type: str.
        sessidlist: list of sessid, type: list[str].
        funcname: name of your func, under sessid dir.
        analysis_name: analysis dir name in mkanalysis-sess.
        runlist: list of runid.
        savepath: dir of where to put average result file.
        outfmt: suffix of out file.
    """
    for runid in runlist:
        prid = "pr%s" % runid

        check_dir(savepath)
        result_name = "mean_res_%s.%s" % (runid, outfmt)
        result_path = os.path.join(savepath, result_name)

        data = []
        for sessid in sessidlist:
            fileroot = os.path.join(projectdir, sessid, funcname,
                                    analysis_name, prid, "res")
            filename = "res-%s.nii.gz" % runid
            filepath = os.path.join(fileroot, filename)

            print("loading %s" % filepath)
            result_run = nib.load(filepath)
            result_data = stats.zscore(result_run.get_data()[:, 0, 0, :],
                                       axis=1)  # doing zscore before average.
            data.append(result_data)
        print("Shape of img: {}: ".format(np.shape(data)))
        avg_data = np.mean(data, axis=0)
        print("Shape of avg_data: {}: ".format(np.shape(avg_data)))

        avg_data = np.reshape(avg_data, result_run.shape)
        data_file = nib.MGHImage(avg_data, None, result_run.get_header())

        nib.save(data_file, result_path)
        print("Saving %s" % result_path)
        print("===" * 10)
Exemplo n.º 25
0
def test_lossless_slice_noscaling(tmp_path):
    fname = tmp_path / 'image.mgh'
    img = nb.MGHImage(np.random.uniform(-20000, 20000,
                                        (5, 5, 5, 5)).astype("float32"),
                      affine=np.eye(4))
    img.to_filename(fname)
    img1 = nb.load(fname)
    sliced_fname = tmp_path / 'sliced.mgh'
    lossless_slice(
        img1,
        (slice(None), slice(None), slice(2, 4))).to_filename(sliced_fname)
    img2 = nb.load(sliced_fname)

    assert np.array_equal(img1.get_fdata()[:, :, 2:4], img2.get_fdata())
    assert np.array_equal(img1.dataobj.get_unscaled()[:, :, 2:4],
                          img2.dataobj.get_unscaled())
    assert img1.dataobj.slope == img2.dataobj.slope
    assert img1.dataobj.inter == img2.dataobj.inter
Exemplo n.º 26
0
def save2mgh(fpath, data, affine=None, header=None):
    """
    Save to a MGH/MGZ file
    The .mgh file format is used to store high-resolution structural data and
    other data which are to be overlaid on the high-resolution structural volume.
    A .mgz (or .mgh.gz) file is a .mgh file that has been compressed with ZLib.
    NOTE!!! MGH file format seemingly has 3D dimensions at least. As a result, it essentially
    regards the first dimensions as a volume and the forth dimension as the number of volumes.
    References:
        https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/MghFormat
        http://nipy.org/nibabel/reference/nibabel.freesurfer.html#nibabel.freesurfer.mghformat.MGHImage

    :param fpath: str
        The file path to output. valid_exts = ('.mgh', '.mgz')
    :param data: numpy array
    :param affine: numpy array
    :param header: MGHHeader
    """
    img = nib.MGHImage(data, affine, header=header)
    nib.save(img, fpath)
Exemplo n.º 27
0
def save_brainimg(imgpath, data, header):
    """
    Save brain image identified by its suffix
    suffix now support
     
    Nifti: .nii.gz
    freesurfer: .mgz, .mgh
    cifti: .dscalar.nii, .dlabel.nii, .dtseries.nii
        
    Parameters:
    ------------
    imgpath: brain image path to be saved
    data: brain image data matrix
    header: brain image header
        
    Returns:
    --------
    """
    imgname = os.path.basename(imgpath)
    imgsuffix = imgname.split('.')[1:]
    imgsuffix = '.'.join(imgsuffix)

    if imgsuffix == 'nii.gz':
        data = np.transpose(data, (1, 2, 3, 0))
        outimg = nib.Nifti1Image(data, None, header)
        nib.save(outimg, imgpath)
    elif imgsuffix == 'mgz' or imgsuffix == 'mgh':
        data = np.transpose(data, (1, 2, 3, 0))
        outimg = nib.MGHImage(data, None, header)
        nib.save(outimg, imgpath)
    elif imgsuffix == 'dscalar.nii' or imgsuffix == 'dlabel.nii' or imgsuffix == 'dtseries.nii':
        data = data[..., 0, 0]
        map_name = [''] * data.shape[0]
        bm_full = header[1]
        cifti.write(imgpath, data,
                    (cifti.Scalar.from_names(map_names), bm_full))
    else:
        raise Exception(
            'Not support this format of brain image data, please contact with author to update this function.'
        )
Exemplo n.º 28
0
def get_diff_data(editp, uneditp, vol, subnum, savediff, diffp):
    # Calculate difference image

    if vol == "brain.finalsurfs":
        edit_img = nib.load(path.join(editp, 'mri/%s.manedit.mgz') % (vol))
    else:
        edit_img = nib.load(path.join(editp, 'mri/%s.mgz') % (vol))

    edit_data = edit_img.get_fdata()
    unedit_img = nib.load(
        path.join(uneditp, 'sub-%s/mri/%s.mgz') % (subnum, vol))
    unedit_data = unedit_img.get_fdata()
    diff_data = unedit_data - edit_data

    if savediff:
        diff_img = nib.MGHImage(diff_data.astype(np.int32), edit_img.affine)
        nib.save(diff_img, os.path.join(diffp, 'diff_%s.mgz') % (vol))

    # Extract non-zero values from difference data and arrange in df
    out = pd.DataFrame(np.asarray(
        np.asarray(diff_data != 0).nonzero()).T).rename(columns={
            0: "Sag",
            1: "Axe",
            2: "Cor"
        })
    out['diff_val'] = diff_data[np.where(diff_data != 0)]
    out['Action'] = np.where(out.diff_val > 0, "delete voxel", "add voxel")

    # When WM edits are not perfect it can look like voxel additions
    # For the clarity of the summary drop these
    if vol == "wm" or vol == "brainmask":
        out = out.query("diff_val != -1")

    out = out.drop(columns="diff_val")
    out['Vol'] = vol
    out = out.sort_values(by=['Cor'])
    out.reset_index(drop=True)

    return (out)
def main(subject, bids_folder):

    (pts_l, poly_l), (pts_r, poly_r) = cortex.db.get_surf(f'sub-{subject}', 'pia')
    surf_l = cortex.polyutils.Surface(pts_l, poly_l)
    surf_r = cortex.polyutils.Surface(pts_r, poly_r)


    for hemi, surf in [('lh', surf_l), ('rh', surf_r)]:
        im = nb.load(op.join(bids_folder, 'derivatives', 'freesurfer', f'sub-{subject}', 'surf', f'{hemi}.wang15_ips.mgz'))
        mask = np.squeeze(im.get_data().astype(bool))
        print(mask.sum())

        ss = surf.create_subsurface(mask)
        nlverts = len(ss.pts)

        dist_matrix = np.zeros((nlverts, nlverts))

        for i in tqdm(range(len(dist_matrix))):
            dist_matrix[i] = ss.geodesic_distance(i)

        v1 = dist_matrix[np.triu_indices(nlverts, k = 1)]
        v2 = dist_matrix[np.tril_indices(nlverts, k = -1)]
        v = (v1 + v2) / 2.

        # see https://stackoverflow.com/questions/17527693/transform-the-upper-lower-triangular-part-of-a-symmetric-matrix-2d-array-into/58806626#58806626
        dist_matrix_ = np.zeros((nlverts,nlverts))
        dist_matrix_[np.triu_indices(nlverts, k = 1)] = v
        dist_matrix_ = dist_matrix_ + dist_matrix_.T

        print(dist_matrix - dist_matrix_)
        print(np.array_equal(dist_matrix, dist_matrix_))

        # im = gifti.GiftiImage(darrays=[gifti.GiftiDataArray(v)])
        # im.to_filename(op.join(bids_folder, 'derivatives', 'freesurfer', f'sub-{subject}', 'surf', f'{hemi}.wang15_ips_distance.gii'))

        new_im = nb.MGHImage(v, im.affine, im.header)
        new_im.to_filename(op.join(bids_folder, 'derivatives', 'freesurfer', f'sub-{subject}', 'surf', f'{hemi}.wang15_ips_distance.mgz'))
Exemplo n.º 30
0
def test_inject_skullstrip(tmp_path):
    t1_mgz = tmp_path / "sub-01" / "mri" / "T1.mgz"
    t1_mgz.parent.mkdir(parents=True)
    # T1.mgz images are uint8
    nb.MGHImage(np.ones((5, 5, 5), dtype=np.uint8), np.eye(4)).to_filename(str(t1_mgz))

    mask_nii = tmp_path / "mask.nii.gz"
    # Masks may be in a different space (and need resampling), but should be boolean,
    # or uint8 in NIfTI
    nb.Nifti1Image(np.ones((6, 6, 6), dtype=np.uint8), np.eye(4)).to_filename(
        str(mask_nii)
    )

    FSInjectBrainExtracted(
        subjects_dir=str(tmp_path), subject_id="sub-01", in_brain=str(mask_nii)
    ).run()

    assert Path.exists(tmp_path / "sub-01" / "mri" / "brainmask.auto.mgz")
    assert Path.exists(tmp_path / "sub-01" / "mri" / "brainmask.mgz")

    # Run a second time to hit "already exists" condition
    FSInjectBrainExtracted(
        subjects_dir=str(tmp_path), subject_id="sub-01", in_brain=str(mask_nii)
    ).run()