def thresh_size_search_single(result_set, images, thresholds, lesion_sizes, compute_lesion_metrics=False):
    true_vols, prob_vols = [], []
    for img in images:
        true_vols.append(img.labels[0])
        prob_vols.append(result_set[img.id] if img.id in result_set else None)

    # Generate result filename and try to load_samples results
    metrics_list = list()
    metrics_names = list()

    for n, (thresh, lesion_size) in enumerate(itertools.product(thresholds, lesion_sizes)):
        printProgressBar(n, len(thresholds)*len(lesion_sizes), suffix=" parameters evaluated")

        metrics_iter = list()
        for lesion_probs, true_vol in zip(prob_vols, true_vols):
            if lesion_probs is not None:
                rec_vol = ThreshSizeBinarizer(thresh, lesion_size).binarize(lesion_probs)
            else:
                continue

            metrics_iter.append(
                compute_segmentation_metrics(true_vol, rec_vol, lesion_metrics=compute_lesion_metrics))

        m_avg_std = compute_avg_std_metrics_list(metrics_iter)

        metrics_list.append(m_avg_std)
        metrics_names.append("th={}_ls={}".format(thresh, lesion_size))

    printProgressBar(len(thresholds)*len(lesion_sizes), len(thresholds)*len(lesion_sizes), suffix=" parameters evaluated")
    return metrics_list, metrics_names
Exemplo n.º 2
0
    def __init__(self, path, modalities=('t1w',), nvols=229):
        super().__init__()
        print("Loading ATLAS dataset...")

        dataset_path = os.path.expanduser(path)
        mni_brain_mask = nib.load(os.path.join(os.path.expanduser('~/atlases/'), 'atlas_brain_mask.nii.gz')).get_data()

        """
        img = nib.Nifti1Image(mni_brain_mask.astype('uint8'), np.eye(4))
        img.to_filename('atlas_brain_mask.nii.gz')
        raise NotImplementedError
        """

        loaded_samples = 0
        for root, subdirs, files in os.walk(dataset_path):
            if any(['t1w' in filename for filename in files]):
                printProgressBar(loaded_samples, nvols, suffix='samples loaded')
                loaded_samples += 1

                t1_path = [os.path.join(root, filename) for filename in files if 't1w' in filename][0]
                lesion_paths = [os.path.join(root, filename) for filename in files if 'LesionSmooth' in filename]

                sample_id = '{}_{}_{}'.format(
                    t1_path[t1_path.find('Site') + 4],
                    t1_path[t1_path.find('/t0') + 3],
                    os.path.basename(t1_path).split('_')[0])

                # Load volume to check dimensions (not the same for all train samples)
                nib_file = nib.load(t1_path)
                vol = nib_file.get_data()

                data = np.zeros((len(modalities),) + vol.shape, dtype='float32')
                labels = np.zeros((1,) + vol.shape, dtype='float32')

                # DATA
                data[0] = vol * mni_brain_mask
                foreground_mask = mni_brain_mask

                # LABELS
                for lesion_file in lesion_paths:
                    labels = np.logical_or(nib.load(lesion_file).get_data() > 0, labels)

                sample = NIC_Image(sample_id, nib_file, data, foreground_mask, labels)
                self.train.append(sample)

                if loaded_samples > nvols:
                    break

        printProgressBar(nvols, nvols, suffix='samples loaded')
Exemplo n.º 3
0
    def generate_instructions(self, images):
        assert isinstance(images, list) and all(
            [isinstance(image, NIC_Image) for image in images])

        set_instructions = []
        for idx, image in enumerate(images):
            printProgressBar(idx, len(images), suffix='samples processed')

            centers = self.sampler.get_centers(image)
            if isinstance(centers,
                          tuple):  # Sampling that have two sets of centers
                pos_centers, unif_centers = centers
                lesion_instructions = get_instructions_from_centers(
                    image.id,
                    pos_centers,
                    self.in_shape,
                    self.out_shape,
                    augment_to=self.augment_positives,
                    autoencoder=self.autoencoder)
                unif_instructions = get_instructions_from_centers(
                    image.id,
                    unif_centers,
                    self.in_shape,
                    self.out_shape,
                    augment_to=None,
                    autoencoder=self.autoencoder)
                image_instructions = lesion_instructions + unif_instructions
            else:
                image_instructions = get_instructions_from_centers(
                    image.id,
                    centers,
                    self.in_shape,
                    self.out_shape,
                    augment_to=self.augment_positives,
                    autoencoder=self.autoencoder)
            set_instructions += image_instructions
        printProgressBar(len(images), len(images), suffix='samples processed')

        return set_instructions
def thresh_size_search(result_set, images, thresholds, lesion_sizes, compute_lesion_metrics=False):
    # 6x faster than the inefficient one

    true_vols, prob_vols = [], []
    for img in images:
        true_vols.append(img.labels[0])
        prob_vols.append(result_set[img.id] if img.id in result_set else None)

    # Generate result filename and try to load_samples results
    metrics_list = list()
    metrics_names = list()
    for n, (thresh, lesion_size) in enumerate(itertools.product(thresholds, lesion_sizes)):
        printProgressBar(n, len(thresholds) * len(lesion_sizes), suffix=" parameters evaluated")

        threads = []
        metrics_iter = [None] * len(prob_vols)
        for sample_idx, (lesion_probs, true_vol) in enumerate(zip(prob_vols, true_vols)):
            if lesion_probs is None:
                continue

            process = Thread(target=process_sample_metrics, args=[true_vol, lesion_probs, thresh, lesion_size, compute_lesion_metrics, metrics_iter, sample_idx])
            process.start()
            threads.append(process)

        # Ensure every volume has been processed and remove none entries from results
        for process in threads:
            process.join()
        metrics_iter = [m for m in metrics_iter if m is not None] # in case incomplete prob set

        # Compute average for the specific thresh and lesion size and store
        m_avg_std = compute_avg_std_metrics_list(metrics_iter)

        metrics_list.append(m_avg_std)
        metrics_names.append("th={}_ls={}".format(thresh, lesion_size))

    printProgressBar(len(thresholds) * len(lesion_sizes), len(thresholds) * len(lesion_sizes),
                     suffix=" parameters evaluated")
    return metrics_list, metrics_names
    def predict_sample(self, model, sample_in):
        assert isinstance(sample_in, NIC_Image)
        print("Predicting sample with id:{}".format(sample_in.id))

        sample = zeropad_sample(sample_in, self.zeropad_shape)

        batch_size = self.instr_gen.bs
        sample_generator, instructions = self.instr_gen.build_patch_generator(
            sample, return_instructions=True)

        voting_img = np.zeros((self.num_classes, ) + sample.data[0].shape,
                              dtype=np.float32)
        counting_img = np.zeros_like(voting_img)

        model.eval()
        model.to(self.device)

        if self.uncertainty_passes > 1:
            try:
                model.activate_dropout_testing(p_out=self.uncertainty_dropout,
                                               dotype=self.uncertainty_dotype)
                print("Activated uncertainty dropout with p={}".format(
                    self.uncertainty_dropout))
            except AttributeError as ae:
                print(str(ae),
                      "Dropout at test time not configured for this model")
                self.uncertainty_passes = 1

        with torch.no_grad():  # Turns off autograd (faster exec)
            eta = ElapsedTimeEstimator(total_iters=len(sample_generator))
            for batch_idx, (x, y) in enumerate(sample_generator):
                printProgressBar(batch_idx,
                                 len(sample_generator),
                                 suffix=' patches predicted - ETA {}'.format(
                                     eta.update(batch_idx + 1)))

                # Send generated x,y batch to GPU
                if isinstance(x, list):
                    for i in range(len(x)):
                        x[i] = x[i].to(self.device)
                else:
                    x = x.to(self.device)

                if isinstance(y, list):
                    for i in range(len(y)):
                        y[i] = y[i].to(self.device)
                else:
                    y = y.to(self.device)

                y_pred = model(x)
                if self.uncertainty_passes > 1:
                    for i in range(1, self.uncertainty_passes):
                        y_pred = y_pred + model(x)
                    y_pred = y_pred / self.uncertainty_passes

                y_pred = y_pred.cpu().numpy()
                if len(y_pred.shape) == 4:  # Add third dimension to 2D patches
                    y_pred = np.expand_dims(y_pred, axis=-1)

                batch_slice = slice(batch_idx * batch_size,
                                    (batch_idx + 1) * batch_size)
                batch_instructions = instructions[batch_slice]

                assert len(y_pred) == len(batch_instructions)
                for patch_pred, patch_instruction in zip(
                        y_pred, batch_instructions):
                    voting_img[
                        patch_instruction.data_patch_slice] += patch_pred
                    counting_img[patch_instruction.
                                 data_patch_slice] += np.ones_like(patch_pred)
            printProgressBar(len(sample_generator),
                             len(sample_generator),
                             suffix=' patches predicted - {} s.'.format(
                                 eta.get_elapsed_time()))

        if self.uncertainty_passes > 1:
            model.deactivate_dropout_testing()

        counting_img[counting_img == 0.0] = 1.0  # Avoid division by 0
        volume_probs = np.divide(voting_img, counting_img)

        if self.lesion_class is not None:
            volume_probs = volume_probs[self.lesion_class]
        else:
            volume_probs = np.squeeze(volume_probs, axis=0)

        volume_probs = remove_zeropad_volume(volume_probs, self.zeropad_shape)

        assert np.array_equal(
            volume_probs.shape,
            sample_in.foreground.shape), (volume_probs.shape,
                                          sample_in.foreground.shape)

        return volume_probs