Exemplo n.º 1
0
    def test_update_write_transform(self):

        motion_simulator = ms.RandomRigidMotionSimulator(dimension=3,
                                                         angle_max_deg=20,
                                                         translation_max=30)

        filenames = ["fetal_brain_%d" % d for d in range(3)]
        stacks = [
            st.Stack.from_filename(
                os.path.join(self.dir_test_data, "%s.nii.gz" % f))
            for f in filenames
        ]

        # Generate random motions for all slices of each stack
        motions_sitk = {f: {} for f in filenames}
        for i, stack in enumerate(stacks):
            motion_simulator.simulate_motion(
                seed=i, simulations=stack.get_number_of_slices())
            motions_sitk[stack.get_filename()] = \
                motion_simulator.get_transforms_sitk()

        # Apply random motion to all slices of all stacks
        dir_output = os.path.join(DIR_TMP, "test_update_write_transform")
        for i, stack in enumerate(stacks):
            for j, slice in enumerate(stack.get_slices()):
                slice.update_motion_correction(
                    motions_sitk[stack.get_filename()][j])

            # Write stacks to directory
            stack.write(dir_output, write_slices=True, write_transforms=True)

        # Read written stacks/slices/transformations
        data_reader = dr.ImageSlicesDirectoryReader(dir_output)
        data_reader.read_data()
        stacks_2 = data_reader.get_data()

        data_reader = dr.SliceTransformationDirectoryReader(dir_output)
        data_reader.read_data()
        transformations_dic = data_reader.get_data()

        filenames_2 = [s.get_filename() for s in stacks_2]
        for i, stack in enumerate(stacks):
            stack_2 = stacks_2[filenames_2.index(stack.get_filename())]
            slices = stack.get_slices()
            slices_2 = stack_2.get_slices()

            # test number of slices match
            self.assertEqual(len(slices), len(slices_2))

            # Test whether header of written slice coincides with transformed
            # slice
            for j in range(stack.get_number_of_slices()):

                # Check Spacing
                self.assertAlmostEqual(np.max(
                    np.abs(
                        np.array(slices[j].sitk.GetSpacing()) -
                        np.array(slices_2[j].sitk.GetSpacing()))),
                                       0,
                                       places=10)
                # Check Origin
                self.assertAlmostEqual(np.max(
                    np.abs(
                        np.array(slices[j].sitk.GetOrigin()) -
                        np.array(slices_2[j].sitk.GetOrigin()))),
                                       0,
                                       places=4)
                # Check Direction
                self.assertAlmostEqual(np.max(
                    np.abs(
                        np.array(slices[j].sitk.GetDirection()) -
                        np.array(slices_2[j].sitk.GetDirection()))),
                                       0,
                                       places=4)

            # Test whether parameters of written slice transforms match
            params = np.array(
                motions_sitk[stack.get_filename()][j].GetParameters())
            params_2 = np.array(
                transformations_dic[stack.get_filename()][j].GetParameters())
            self.assertAlmostEqual(np.max(np.abs(params - params_2)),
                                   0,
                                   places=16)
Exemplo n.º 2
0
def main():

    input_parser = InputArgparser(
        description="Simulate stacks from obtained reconstruction. "
        "Script simulates/projects the slices at estimated positions "
        "within reconstructed volume. Ideally, if motion correction was "
        "correct, the resulting stack of such obtained projected slices, "
        "corresponds to the originally acquired (motion corrupted) data.",
    )
    input_parser.add_dir_input(required=True)
    input_parser.add_reconstruction(required=True)
    input_parser.add_dir_output(required=True)
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_prefix_output(default="Simulated_")
    input_parser.add_option(
        option_string="--copy-data",
        type=int,
        help="Turn on/off copying of original data (including masks) to "
        "output folder.",
        default=0)
    input_parser.add_option(
        option_string="--reconstruction-mask",
        type=str,
        help="If given, reconstruction image mask is propagated to "
        "simulated stack(s) of slices as well",
        default=None)
    input_parser.add_interpolator(
        option_string="--interpolator-mask",
        help="Choose the interpolator type to propagate the reconstruction "
        "mask (%s)." % (INTERPOLATOR_TYPES),
        default="NearestNeighbor")
    input_parser.add_verbose(default=0)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    if args.interpolator_mask not in ALLOWED_INTERPOLATORS:
        raise IOError(
            "Unknown interpolator provided. Possible choices are %s" % (
                INTERPOLATOR_TYPES))

    # Read motion corrected data
    data_reader = dr.ImageSlicesDirectoryReader(
        path_to_directory=args.dir_input,
        suffix_mask=args.suffix_mask)
    data_reader.read_data()
    stacks = data_reader.get_data()

    reconstruction = st.Stack.from_filename(
        args.reconstruction, args.reconstruction_mask, extract_slices=False)

    linear_operators = lin_op.LinearOperators()

    for i, stack in enumerate(stacks):

        # initialize image data array(s)
        nda = np.zeros_like(sitk.GetArrayFromImage(stack.sitk))

        if args.reconstruction_mask:
            nda_mask = np.zeros_like(sitk.GetArrayFromImage(stack.sitk_mask))

        # Simulate slices at estimated positions within reconstructed volume
        simulated_slices = [
            linear_operators.A(
                reconstruction, s, interpolator_mask=args.interpolator_mask)
            for s in stack.get_slices()
        ]

        # Fill stack information "as if slice was acquired consecutively"
        # Therefore, simulated stack slices correspond to acquired slices
        # (in case motion correction was correct)
        for j, simulated_slice in enumerate(simulated_slices):
            nda[j, :, :] = sitk.GetArrayFromImage(simulated_slice.sitk)

            if args.reconstruction_mask:
                nda_mask[j, :, :] = sitk.GetArrayFromImage(
                    simulated_slice.sitk_mask)

        # Create nifti image with same image header as original stack
        simulated_stack_sitk = sitk.GetImageFromArray(nda)
        simulated_stack_sitk.CopyInformation(stack.sitk)

        if args.reconstruction_mask:
            simulated_stack_sitk_mask = sitk.GetImageFromArray(nda_mask)
            simulated_stack_sitk_mask.CopyInformation(stack.sitk_mask)
        else:
            simulated_stack_sitk_mask = None

        simulated_stack = st.Stack.from_sitk_image(
            image_sitk=simulated_stack_sitk,
            image_sitk_mask=simulated_stack_sitk_mask,
            filename=args.prefix_output + stack.get_filename(),
            extract_slices=False)

        if args.verbose:
            sitkh.show_stacks([
                stack, simulated_stack],
                segmentation=simulated_stack
                if args.reconstruction_mask else None)

        simulated_stack.write(
            args.dir_output,
            write_mask=True,
            write_slices=False,
            suffix_mask=args.suffix_mask)

        if args.copy_data:
            stack.write(
                args.dir_output,
                write_mask=True,
                write_slices=False,
                suffix_mask=args.suffix_mask)

    return 0
Exemplo n.º 3
0
def main():

    time_start = ph.start_timing()

    # Set print options for numpy
    np.set_printoptions(precision=3)

    # Read input
    input_parser = InputArgparser(
        description="Script to study reconstruction parameters and their "
        "impact on the volumetric reconstruction quality.",
    )
    input_parser.add_dir_input()
    input_parser.add_filenames()
    input_parser.add_image_selection()
    input_parser.add_dir_output(required=True)
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_reconstruction_space()
    input_parser.add_reference(
        help="Path to reference NIfTI image file. If given the volumetric "
        "reconstructed is performed in this physical space. "
        "Either a reconstruction space or a reference must be provided",
        required=False)
    input_parser.add_reference_mask(default=None)
    input_parser.add_study_name()
    input_parser.add_reconstruction_type(default="TK1L2")
    input_parser.add_measures(default=["PSNR", "RMSE", "SSIM", "NCC", "NMI"])
    input_parser.add_tv_solver(default="PD")
    input_parser.add_iterations(default=50)
    input_parser.add_rho(default=0.1)
    input_parser.add_iter_max(default=10)
    input_parser.add_minimizer(default="lsmr")
    input_parser.add_alpha(default=0.01)
    input_parser.add_data_loss(default="linear")
    input_parser.add_data_loss_scale(default=1)
    input_parser.add_log_script_execution(default=1)
    input_parser.add_verbose(default=1)

    # Range for parameter sweeps
    input_parser.add_alpha_range(default=[0.001, 0.05, 20])  # TK1L2
    # input_parser.add_alpha_range(default=[0.001, 0.003, 10])  # TVL2, HuberL2
    input_parser.add_data_losses(
        # default=["linear", "arctan"]
    )
    input_parser.add_data_loss_scale_range(
        # default=[0.1, 1.5, 2]
    )

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    if args.reference is None and args.reconstruction_space is None:
        raise IOError("Either reference (--reference) or reconstruction space "
                      "(--reconstruction-space) must be provided.")

    # Write script execution call
    if args.log_script_execution:
        input_parser.write_performed_script_execution(
            os.path.abspath(__file__))

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")

    # Neither '--dir-input' nor '--filenames' was specified
    if args.filenames is not None and args.dir_input is not None:
        raise IOError(
            "Provide input by either '--dir-input' or '--filenames' "
            "but not both together")

    # '--dir-input' specified
    elif args.dir_input is not None:
        data_reader = dr.ImageSlicesDirectoryReader(
            path_to_directory=args.dir_input,
            suffix_mask=args.suffix_mask,
            image_selection=args.image_selection)

    # '--filenames' specified
    elif args.filenames is not None:
        data_reader = dr.MultipleImagesReader(
            args.filenames, suffix_mask=args.suffix_mask)

    else:
        raise IOError(
            "Provide input by either '--dir-input' or '--filenames'")

    data_reader.read_data()
    stacks = data_reader.get_data()
    ph.print_info("%d input stacks read for further processing" % len(stacks))

    if args.reference is not None:
        reference = st.Stack.from_filename(
            file_path=args.reference,
            file_path_mask=args.reference_mask,
            extract_slices=False)

        reconstruction_space = stacks[0].get_resampled_stack(reference.sitk)
        reconstruction_space = \
            reconstruction_space.get_stack_multiplied_with_mask()
        x_ref = sitk.GetArrayFromImage(reference.sitk).flatten()
        x_ref_mask = sitk.GetArrayFromImage(reference.sitk_mask).flatten()

    else:
        reconstruction_space = st.Stack.from_filename(
            file_path=args.reconstruction_space,
            extract_slices=False)
        reconstruction_space = stacks[0].get_resampled_stack(
            reconstruction_space.sitk)
        reconstruction_space = \
            reconstruction_space.get_stack_multiplied_with_mask()
        x_ref = None
        x_ref_mask = None

    # ----------------------------Set Up Parameters----------------------------
    parameters = {}
    parameters["alpha"] = np.linspace(
        args.alpha_range[0], args.alpha_range[1], int(args.alpha_range[2]))
    if args.data_losses is not None:
        parameters["data_loss"] = args.data_losses
    if args.data_loss_scale_range is not None:
        parameters["data_loss_scale"] = np.linspace(
            args.data_loss_scale_range[0],
            args.data_loss_scale_range[1],
            int(args.data_loss_scale_range[2]))

    # --------------------------Set Up Parameter Study-------------------------
    if args.study_name is None:
        name = args.reconstruction_type
    else:
        name = args.study_name

    reconstruction_info = {
        "shape": reconstruction_space.sitk.GetSize()[::-1],
        "origin": reconstruction_space.sitk.GetOrigin(),
        "spacing": reconstruction_space.sitk.GetSpacing(),
        "direction": reconstruction_space.sitk.GetDirection(),
    }

    # Create Tikhonov solver from which all information can be extracted
    # (also for other reconstruction types)
    tmp = tk.TikhonovSolver(
        stacks=stacks,
        reconstruction=reconstruction_space,
        alpha=args.alpha,
        iter_max=args.iter_max,
        data_loss=args.data_loss,
        data_loss_scale=args.data_loss_scale,
        reg_type="TK1",
        minimizer=args.minimizer,
        verbose=args.verbose,
    )
    solver = tmp.get_solver()

    parameter_study_interface = \
        deconv_interface.DeconvolutionParameterStudyInterface(
            A=solver.get_A(),
            A_adj=solver.get_A_adj(),
            D=solver.get_B(),
            D_adj=solver.get_B_adj(),
            b=solver.get_b(),
            x0=solver.get_x0(),
            alpha=solver.get_alpha(),
            x_scale=solver.get_x_scale(),
            data_loss=solver.get_data_loss(),
            data_loss_scale=solver.get_data_loss_scale(),
            iter_max=solver.get_iter_max(),
            minimizer=solver.get_minimizer(),
            iterations=args.iterations,
            measures=args.measures,
            dimension=3,
            L2=16./reconstruction_space.sitk.GetSpacing()[0]**2,
            reconstruction_type=args.reconstruction_type,
            rho=args.rho,
            dir_output=args.dir_output,
            parameters=parameters,
            name=name,
            reconstruction_info=reconstruction_info,
            x_ref=x_ref,
            x_ref_mask=x_ref_mask,
            tv_solver=args.tv_solver,
            verbose=args.verbose,
        )
    parameter_study_interface.set_up_parameter_study()
    parameter_study = parameter_study_interface.get_parameter_study()

    # Run parameter study
    parameter_study.run()

    print("\nComputational time for Deconvolution Parameter Study %s: %s" %
          (name, parameter_study.get_computational_time()))

    return 0
Exemplo n.º 4
0
def main():

    time_start = ph.start_timing()

    # Set print options for numpy
    np.set_printoptions(precision=3)

    # Read input
    input_parser = InputArgparser(
        description="Volumetric MRI reconstruction framework to reconstruct "
        "an isotropic, high-resolution 3D volume from multiple "
        "motion-corrected (or static) stacks of low-resolution slices.", )
    input_parser.add_dir_input()
    input_parser.add_filenames()
    input_parser.add_image_selection()
    input_parser.add_dir_output(required=True)
    input_parser.add_prefix_output(default="SRR_")
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_target_stack_index(default=0)
    input_parser.add_extra_frame_target(default=10)
    input_parser.add_isotropic_resolution(default=None)
    input_parser.add_reconstruction_space(default=None)
    input_parser.add_minimizer(default="lsmr")
    input_parser.add_iter_max(default=10)
    input_parser.add_reconstruction_type(default="TK1L2")
    input_parser.add_data_loss(default="linear")
    input_parser.add_data_loss_scale(default=1)
    input_parser.add_alpha(default=0.02  # TK1L2
                           # default=0.006  #TVL2, HuberL2
                           )
    input_parser.add_rho(default=0.5)
    input_parser.add_tv_solver(default="PD")
    input_parser.add_pd_alg_type(default="ALG2")
    input_parser.add_iterations(default=15)
    input_parser.add_subfolder_comparison()
    input_parser.add_provide_comparison(default=0)
    input_parser.add_log_script_execution(default=1)
    input_parser.add_verbose(default=0)
    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    # Write script execution call
    if args.log_script_execution:
        input_parser.write_performed_script_execution(
            os.path.abspath(__file__))

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")

    # Neither '--dir-input' nor '--filenames' was specified
    if args.filenames is not None and args.dir_input is not None:
        raise IOError("Provide input by either '--dir-input' or '--filenames' "
                      "but not both together")

    # '--dir-input' specified
    elif args.dir_input is not None:
        data_reader = dr.ImageSlicesDirectoryReader(
            path_to_directory=args.dir_input,
            suffix_mask=args.suffix_mask,
            image_selection=args.image_selection)

    # '--filenames' specified
    elif args.filenames is not None:
        data_reader = dr.MultipleImagesReader(args.filenames,
                                              suffix_mask=args.suffix_mask)

    else:
        raise IOError("Provide input by either '--dir-input' or '--filenames'")

    if args.reconstruction_type not in ["TK1L2", "TVL2", "HuberL2"]:
        raise IOError("Reconstruction type unknown")

    data_reader.read_data()
    stacks = data_reader.get_data()
    ph.print_info("%d input stacks read for further processing" % len(stacks))

    # Reconstruction space is given isotropically resampled target stack
    if args.reconstruction_space is None:
        recon0 = \
            stacks[args.target_stack_index].get_isotropically_resampled_stack(
                resolution=args.isotropic_resolution,
                extra_frame=args.extra_frame_target)

    # Reconstruction space was provided by user
    else:
        recon0 = st.Stack.from_filename(args.reconstruction_space,
                                        extract_slices=False)

        # Change resolution for isotropic resolution if provided by user
        if args.isotropic_resolution is not None:
            recon0 = recon0.get_isotropically_resampled_stack(
                args.isotropic_resolution)

        # Use image information of selected target stack as recon0 serves
        # as initial value for reconstruction
        recon0 = \
            stacks[args.target_stack_index].get_resampled_stack(recon0.sitk)
        recon0 = recon0.get_stack_multiplied_with_mask()

    if args.reconstruction_type in ["TVL2", "HuberL2"]:
        ph.print_title("Compute Initial value for %s" %
                       args.reconstruction_type)
    SRR0 = tk.TikhonovSolver(
        stacks=stacks,
        reconstruction=recon0,
        alpha=args.alpha,
        iter_max=args.iter_max,
        reg_type="TK1",
        minimizer=args.minimizer,
        data_loss=args.data_loss,
        data_loss_scale=args.data_loss_scale,
        # verbose=args.verbose,
    )
    SRR0.run()

    recon = SRR0.get_reconstruction()
    recon.set_filename(SRR0.get_setting_specific_filename(args.prefix_output))
    recon.write(args.dir_output)

    # List to store SRRs
    recons = []
    for i in range(0, len(stacks)):
        recons.append(stacks[i])
    recons.insert(0, recon)

    if args.reconstruction_type in ["TVL2", "HuberL2"]:
        ph.print_title("Compute %s reconstruction" % args.reconstruction_type)
        if args.tv_solver == "ADMM":
            SRR = admm.ADMMSolver(
                stacks=stacks,
                reconstruction=st.Stack.from_stack(SRR0.get_reconstruction()),
                minimizer=args.minimizer,
                alpha=args.alpha,
                iter_max=args.iter_max,
                rho=args.rho,
                data_loss=args.data_loss,
                iterations=args.iterations,
                verbose=args.verbose,
            )
            SRR.run()
            recon = SRR.get_reconstruction()
            recon.set_filename(
                SRR.get_setting_specific_filename(args.prefix_output))
            recons.insert(0, recon)

            recon.write(args.dir_output)

        else:

            SRR = pd.PrimalDualSolver(
                stacks=stacks,
                reconstruction=st.Stack.from_stack(SRR0.get_reconstruction()),
                minimizer=args.minimizer,
                alpha=args.alpha,
                iter_max=args.iter_max,
                iterations=args.iterations,
                alg_type=args.pd_alg_type,
                reg_type="TV"
                if args.reconstruction_type == "TVL2" else "huber",
                data_loss=args.data_loss,
                verbose=args.verbose,
            )
            SRR.run()
            recon = SRR.get_reconstruction()
            recon.set_filename(
                SRR.get_setting_specific_filename(args.prefix_output))
            recons.insert(0, recon)

            recon.write(args.dir_output)

    if args.verbose and not args.provide_comparison:
        sitkh.show_stacks(recons)

    # Show SRR together with linearly resampled input data.
    # Additionally, a script is generated to open files
    if args.provide_comparison:
        sitkh.show_stacks(
            recons,
            show_comparison_file=args.provide_comparison,
            dir_output=os.path.join(args.dir_output,
                                    args.subfolder_comparison),
        )

    ph.print_line_separator()

    elapsed_time = ph.stop_timing(time_start)
    ph.print_title("Summary")
    print("Computational Time for Volumetric Reconstruction: %s" %
          (elapsed_time))

    return 0
Exemplo n.º 5
0
def main():

    time_start = ph.start_timing()

    np.set_printoptions(precision=3)

    input_parser = InputArgparser(
        description="Register an obtained reconstruction (moving) "
        "to a template image/space (fixed) using rigid registration. "
        "The resulting registration can optionally be applied to previously "
        "obtained motion correction slice transforms so that a volumetric "
        "reconstruction is possible in the (standard anatomical) space "
        "defined by the fixed.", )
    input_parser.add_fixed(required=True)
    input_parser.add_moving(
        required=True,
        nargs="+",
        help="Specify moving image to be warped to fixed space. "
        "If multiple images are provided, all images will be transformed "
        "uniformly according to the registration obtained for the first one.")
    input_parser.add_dir_output(required=True)
    input_parser.add_dir_input()
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_search_angle(default=180)
    input_parser.add_option(
        option_string="--transform-only",
        type=int,
        help="Turn on/off functionality to transform moving image(s) to fixed "
        "image only, i.e. no resampling to fixed image space",
        default=0)
    input_parser.add_option(
        option_string="--write-transform",
        type=int,
        help="Turn on/off functionality to write registration transform",
        default=0)
    input_parser.add_verbose(default=0)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    use_reg_aladin_for_refinement = True

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")
    data_reader = dr.MultipleImagesReader(args.moving, suffix_mask="_mask")
    data_reader.read_data()
    moving = data_reader.get_data()

    data_reader = dr.MultipleImagesReader([args.fixed], suffix_mask="_mask")
    data_reader.read_data()
    fixed = data_reader.get_data()[0]

    # -------------------Register Reconstruction to Template-------------------
    ph.print_title("Register Reconstruction to Template")

    # Define search angle ranges for FLIRT in all three dimensions
    search_angles = [
        "-searchr%s -%d %d" % (x, args.search_angle, args.search_angle)
        for x in ["x", "y", "z"]
    ]
    search_angles = (" ").join(search_angles)
    options_args = []
    options_args.append(search_angles)
    # cost = "mutualinfo"
    # options_args.append("-searchcost %s -cost %s" % (cost, cost))
    registration = regflirt.FLIRT(
        fixed=moving[0],
        moving=fixed,
        # use_fixed_mask=True,
        # use_moving_mask=True,  # moving mask only seems to work for SB cases
        registration_type="Rigid",
        use_verbose=False,
        options=(" ").join(options_args),
    )
    ph.print_info("Run Registration (FLIRT) ... ", newline=False)
    registration.run()
    print("done")
    transform_sitk = registration.get_registration_transform_sitk()

    if args.write_transform:
        path_to_transform = os.path.join(args.dir_output,
                                         "registration_transform_sitk.txt")
        sitk.WriteTransform(transform_sitk, path_to_transform)

    # Apply rigidly transform to align reconstruction (moving) with template
    # (fixed)
    for m in moving:
        m.update_motion_correction(transform_sitk)

        # Additionally, use RegAladin for more accurate alignment
        # Rationale: FLIRT has better capture range, but RegAladin seems to
        # find better alignment once it is within its capture range.
        if use_reg_aladin_for_refinement:
            registration = niftyreg.RegAladin(
                fixed=m,
                use_fixed_mask=True,
                moving=fixed,
                registration_type="Rigid",
                use_verbose=False,
            )
            ph.print_info("Run Registration (RegAladin) ... ", newline=False)
            registration.run()
            print("done")
            transform2_sitk = registration.get_registration_transform_sitk()
            m.update_motion_correction(transform2_sitk)
            transform_sitk = sitkh.get_composite_sitk_affine_transform(
                transform2_sitk, transform_sitk)

    if args.transform_only:
        for m in moving:
            m.write(args.dir_output, write_mask=False)
        ph.exit()

    # Resample reconstruction (moving) to template space (fixed)
    warped_moving = [
        m.get_resampled_stack(fixed.sitk, interpolator="Linear")
        for m in moving
    ]

    for wm in warped_moving:
        wm.set_filename(wm.get_filename() + "ResamplingToTemplateSpace")

        if args.verbose:
            sitkh.show_stacks([fixed, wm], segmentation=fixed)

        # Write resampled reconstruction (moving)
        wm.write(args.dir_output, write_mask=False)

    if args.dir_input is not None:
        data_reader = dr.ImageSlicesDirectoryReader(
            path_to_directory=args.dir_input, suffix_mask=args.suffix_mask)
        data_reader.read_data()
        stacks = data_reader.get_data()

        for i, stack in enumerate(stacks):
            stack.update_motion_correction(transform_sitk)
            ph.print_info("Stack %d/%d: All slice transforms updated" %
                          (i + 1, len(stacks)))

            # Write transformed slices
            stack.write(
                os.path.join(args.dir_output, "motion_correction"),
                write_mask=True,
                write_slices=True,
                write_transforms=True,
                suffix_mask=args.suffix_mask,
            )

    elapsed_time_total = ph.stop_timing(time_start)

    # Summary
    ph.print_title("Summary")
    print("Computational Time: %s" % (elapsed_time_total))

    return 0