Exemplo n.º 1
0
def test_identity_resample():
    """ Test resampling with an identity affine.
    """
    shape = (3, 2, 5, 2)
    data = np.random.randint(0, 10, shape)
    affine = np.eye(4)
    affine[:3, -1] = 0.5 * np.array(shape[:3])
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=affine, interpolation='nearest')
    np.testing.assert_almost_equal(data, rot_img.get_data())
    # Smoke-test with a list affine
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=affine.tolist(),
                           interpolation='nearest')
    # Test with a 3x3 affine
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=affine[:3, :3],
                           interpolation='nearest')
    np.testing.assert_almost_equal(data, rot_img.get_data())

    # Test with non native endian data

    # Test with big endian data ('>f8')
    for interpolation in ['nearest', 'continuous']:
        rot_img = resample_img(Nifti1Image(data.astype('>f8'), affine),
                               target_affine=affine.tolist(),
                               interpolation=interpolation)
        np.testing.assert_almost_equal(data, rot_img.get_data())

    # Test with little endian data ('<f8')
    for interpolation in ['nearest', 'continuous']:
        rot_img = resample_img(Nifti1Image(data.astype('<f8'), affine),
                               target_affine=affine.tolist(),
                               interpolation=interpolation)
        np.testing.assert_almost_equal(data, rot_img.get_data())
Exemplo n.º 2
0
def test_resampling_continuous_with_affine():
    prng = np.random.RandomState(10)

    data_3d = prng.randint(1, 4, size=(1, 10, 10))
    data_4d = prng.randint(1, 4, size=(1, 10, 10, 3))

    for data in [data_3d, data_4d]:
        for angle in (0, np.pi / 2., np.pi, 3 * np.pi / 2.):
            rot = rotation(0, angle)

            img = Nifti1Image(data, np.eye(4))
            rot_img = resample_img(
                img,
                target_affine=rot,
                interpolation='continuous')
            rot_img_back = resample_img(
                rot_img,
                target_affine=np.eye(4),
                interpolation='continuous')

            center = slice(1, 9)
            # values on the edges are wrong for some reason
            mask = (0, center, center)
            np.testing.assert_allclose(
                img.get_data()[mask],
                rot_img_back.get_data()[mask])
            assert_equal(rot_img.get_data().dtype,
                         np.dtype(data.dtype.name.replace('int', 'float')))
Exemplo n.º 3
0
def test_resampling_with_affine():
    """ Test resampling with a given rotation part of the affine.
    """
    prng = np.random.RandomState(10)

    data_3d = prng.randint(4, size=(1, 4, 4))
    data_4d = prng.randint(4, size=(1, 4, 4, 3))

    for data in [data_3d, data_4d]:
        for angle in (0, np.pi, np.pi / 2., np.pi / 4., np.pi / 3.):
            rot = rotation(0, angle)
            rot_img = resample_img(Nifti1Image(data, np.eye(4)),
                                   target_affine=rot,
                                   interpolation='nearest')
            assert_equal(np.max(data),
                         np.max(rot_img.get_data()))
            assert_equal(rot_img.get_data().dtype, data.dtype)

    # We take the same rotation logic as above and test with nonnative endian
    # data as input
    for data in [data_3d, data_4d]:
        img = Nifti1Image(data.astype('>f8'), np.eye(4))
        for angle in (0, np.pi, np.pi / 2., np.pi / 4., np.pi / 3.):
            rot = rotation(0, angle)
            rot_img = resample_img(img, target_affine=rot,
                                   interpolation='nearest')
            assert_equal(np.max(data),
                         np.max(rot_img.get_data()))
Exemplo n.º 4
0
def save_maps(model_dir, doc, resample=False,
              target_affine=None, target_shape=None):
    for dtype in ['c_maps', 't_maps']:
        if dtype in doc:
            maps_dir = make_dir(model_dir, dtype, strict=False)
            for key in doc[dtype]:
                fname = '%s.nii.gz' % safe_name(key.lower())
                img = nb.load(doc[dtype][key])
                if resample:
                    img = resample_img(img, target_affine, target_shape)
                nb.save(img, os.path.join(maps_dir, fname))
    if 'beta_maps' in doc:
        maps_dir = make_dir(model_dir, 'beta_maps')
        for path in doc['beta_maps']:
            fname = '%s.nii.gz' % safe_name(os.path.split(
                path)[1].lower().split('.')[0])
            img = nb.load(path)
            if resample:
                img = resample_img(
                    img, target_affine, target_shape, copy=False)
            nb.save(img, os.path.join(maps_dir, fname))
    if 'mask' in doc:
        img = nb.load(doc['mask'])
        if resample:
            img = resample_img(img, target_affine, target_shape,
                               interpolation='nearest', copy=False)
        nb.save(img, os.path.join(model_dir, 'mask.nii.gz'))
Exemplo n.º 5
0
def test_resampling_fill_value():
    """ Test resampling with a non-zero fill value
    """
    prng = np.random.RandomState(10)

    data_3d = prng.rand(1, 4, 4)
    data_4d = prng.rand(1, 4, 4, 3)

    angle = np.pi/4
    rot = rotation(0, angle)

    # Try a few different fill values
    for data in [data_3d, data_4d]:
        for val in (-3.75, 0):
            if val:
                rot_img = resample_img(Nifti1Image(data, np.eye(4)),
                                       target_affine=rot,
                                       interpolation='nearest',
                                       fill_value=val,
                                       clip=False)
            else:
                rot_img = resample_img(Nifti1Image(data, np.eye(4)),
                                       target_affine=rot,
                                       interpolation='nearest',
                                       clip=False)
            assert_equal(rot_img.get_data().flatten()[0],
                         val)

            rot_img2 = resample_to_img(Nifti1Image(data, np.eye(4)),
                                       rot_img,
                                       interpolation='nearest',
                                       fill_value=val)
            assert_equal(rot_img2.get_data().flatten()[0],
                         val)
Exemplo n.º 6
0
def test_resampling_with_int_types_no_crash():
    affine = np.eye(4)
    data = np.zeros((2, 2, 2))

    for dtype in [np.int, np.int8, np.int16, np.int32, np.int64,
                  np.uint, np.uint8, np.uint16, np.uint32, np.uint64,
                  np.float32, np.float64, np.float]:
        img = Nifti1Image(data.astype(dtype), affine)
        resample_img(img, target_affine=2. * affine)
Exemplo n.º 7
0
def test_resampling_nan():
    # Test that when the data has NaNs they do not propagate to the
    # whole image

    for core_shape in [(3, 5, 4), (3, 5, 4, 2)]:
        # create deterministic data, padded with one
        # voxel thickness of zeros
        core_data = np.arange(np.prod(core_shape)
                              ).reshape(core_shape).astype(np.float)
        # Introduce a nan
        core_data[2, 2:4, 1] = np.nan
        full_data_shape = np.array(core_shape) + 2
        full_data = np.zeros(full_data_shape)
        full_data[[slice(1, 1 + s) for s in core_shape]] = core_data

        source_img = Nifti1Image(full_data, np.eye(4))

        # Transform real data using easily checkable transformations
        # For now: axis permutations
        axis_permutation = [0, 1, 2]

        # check 3x3 transformation matrix
        target_affine = np.eye(3)[axis_permutation]
        with pytest.warns(Warning, match=r"(\bnan\b|invalid value)"):
            resampled_img = resample_img(source_img,
                                         target_affine=target_affine)

        resampled_data = get_data(resampled_img)
        if full_data.ndim == 4:
            axis_permutation.append(3)
        what_resampled_data_should_be = full_data.transpose(axis_permutation)
        non_nan = np.isfinite(what_resampled_data_should_be)

        # Check that the input data hasn't been modified:
        assert not np.all(non_nan)

        # Check that for finite value resampling works without problems
        assert_array_almost_equal(resampled_data[non_nan],
                                  what_resampled_data_should_be[non_nan])

        # Check that what was not finite is still not finite
        assert not np.any(np.isfinite(
                        resampled_data[np.logical_not(non_nan)]))

    # Test with an actual resampling, in the case of a bigish hole
    # This checks the extrapolation mechanism: if we don't do any
    # extrapolation before resampling, the hole creates big
    # artefacts
    data = 10 * np.ones((10, 10, 10))
    data[4:6, 4:6, 4:6] = np.nan
    source_img = Nifti1Image(data, 2 * np.eye(4))
    with pytest.warns(RuntimeWarning):
        resampled_img = resample_img(source_img,
                                     target_affine=np.eye(4))

    resampled_data = get_data(resampled_img)
    np.testing.assert_allclose(10, resampled_data[np.isfinite(resampled_data)])
Exemplo n.º 8
0
def test_resampling_with_int_types_no_crash():
    affine = np.eye(4)
    data = np.zeros((2, 2, 2))

    for dtype in [
            np.int, np.int8, np.int16, np.int32, np.int64, np.uint, np.uint8,
            np.uint16, np.uint32, np.uint64, np.float32, np.float64, np.float
    ]:
        img = Nifti1Image(data.astype(dtype), affine)
        resample_img(img, target_affine=2. * affine)
Exemplo n.º 9
0
def test_raises_upon_3x3_affine_and_no_shape():
    img = Nifti1Image(np.zeros([8, 9, 10]), affine=np.eye(4))
    exception = ValueError
    message = ("Given target shape without anchor "
               "vector: Affine shape should be \\(4, 4\\) and "
               "not \\(3, 3\\)")
    with pytest.raises(exception, match=message):
        resample_img(img,
                     target_affine=np.eye(3) * 2,
                     target_shape=(10, 10, 10))
Exemplo n.º 10
0
def test_4d_affine_bounding_box_error():

    small_data = np.ones([4, 4, 4])
    small_data_4D_affine = np.eye(4)
    small_data_4D_affine[:3, -1] = np.array([5, 4, 5])

    small_img = Nifti1Image(small_data,
                            small_data_4D_affine)

    bigger_data_4D_affine = np.eye(4)
    bigger_data = np.zeros([10, 10, 10])
    bigger_img = Nifti1Image(bigger_data,
                             bigger_data_4D_affine)

    # We would like to check whether all/most of the data
    # will be contained in the resampled image
    # The measure will be the l2 norm, since some resampling
    # schemes approximately conserve it

    def l2_norm(arr):
        return (arr ** 2).sum()

    # resample using 4D affine and specified target shape
    small_to_big_with_shape = resample_img(
        small_img,
        target_affine=bigger_img.affine,
        target_shape=bigger_img.shape)
    # resample using 3D affine and no target shape
    small_to_big_without_shape_3D_affine = resample_img(
        small_img,
        target_affine=bigger_img.affine[:3, :3])
    # resample using 4D affine and no target shape
    small_to_big_without_shape = resample_img(
        small_img,
        target_affine=bigger_img.affine)

    # The first 2 should pass
    assert_almost_equal(l2_norm(small_data),
                        l2_norm(get_data(small_to_big_with_shape)))
    assert_almost_equal(
        l2_norm(small_data),
        l2_norm(get_data(small_to_big_without_shape_3D_affine)))

    # After correcting decision tree for 4x4 affine given + no target shape
    # from "use initial shape" to "calculate minimal bounding box respecting
    # the affine anchor and the data"
    assert_almost_equal(l2_norm(small_data),
                        l2_norm(get_data(small_to_big_without_shape)))

    assert_array_equal(
        small_to_big_without_shape.shape,
        small_data_4D_affine[:3, -1] + np.array(small_img.shape))
Exemplo n.º 11
0
def test_resample_img_segmentation_fault():
    # see https://github.com/nilearn/nilearn/issues/346
    shape_in = (64, 64, 64)
    aff_in = np.diag([2., 2., 2., 1.])
    aff_out = np.diag([3., 3., 3., 1.])
    # fourth_dim = 1024 works fine but for 1025 creates a segmentation
    # fault with scipy < 0.14.1
    fourth_dim = 1025
    data = np.ones(shape_in + (fourth_dim, ), dtype=np.float64)

    img_in = Nifti1Image(data, aff_in)

    resample_img(img_in, target_affine=aff_out, interpolation='nearest')
Exemplo n.º 12
0
def test_4d_affine_bounding_box_error():

    small_data = np.ones([4, 4, 4])
    small_data_4D_affine = np.eye(4)
    small_data_4D_affine[:3, -1] = np.array([5, 4, 5])

    small_img = Nifti1Image(small_data,
                            small_data_4D_affine)

    bigger_data_4D_affine = np.eye(4)
    bigger_data = np.zeros([10, 10, 10])
    bigger_img = Nifti1Image(bigger_data,
                             bigger_data_4D_affine)

    # We would like to check whether all/most of the data
    # will be contained in the resampled image
    # The measure will be the l2 norm, since some resampling
    # schemes approximately conserve it

    def l2_norm(arr):
        return (arr ** 2).sum()

    # resample using 4D affine and specified target shape
    small_to_big_with_shape = resample_img(
        small_img,
        target_affine=bigger_img.get_affine(),
        target_shape=bigger_img.shape)
    # resample using 3D affine and no target shape
    small_to_big_without_shape_3D_affine = resample_img(
        small_img,
        target_affine=bigger_img.get_affine()[:3, :3])
    # resample using 4D affine and no target shape
    small_to_big_without_shape = resample_img(
        small_img,
        target_affine=bigger_img.get_affine())

    # The first 2 should pass
    assert_almost_equal(l2_norm(small_data),
                 l2_norm(small_to_big_with_shape.get_data()))
    assert_almost_equal(l2_norm(small_data),
                 l2_norm(small_to_big_without_shape_3D_affine.get_data()))

    # After correcting decision tree for 4x4 affine given + no target shape
    # from "use initial shape" to "calculate minimal bounding box respecting
    # the affine anchor and the data"
    assert_almost_equal(l2_norm(small_data),
                 l2_norm(small_to_big_without_shape.get_data()))

    assert_array_equal(small_to_big_without_shape.shape,
                 small_data_4D_affine[:3, -1] + np.array(small_img.shape))
Exemplo n.º 13
0
def test_resampling_error_checks():
    shape = (3, 2, 5, 2)
    target_shape = (5, 3, 2)
    affine = np.eye(4)
    data = np.random.randint(0, 10, shape)
    img = Nifti1Image(data, affine)

    # Correct parameters: no exception
    resample_img(img, target_shape=target_shape, target_affine=affine)
    resample_img(img, target_affine=affine)

    with testing.write_tmp_imgs(img) as filename:
        resample_img(filename, target_shape=target_shape, target_affine=affine)

    # Missing parameter
    assert_raises(ValueError, resample_img, img, target_shape=target_shape)

    # Invalid shape
    assert_raises(ValueError, resample_img, img, target_shape=(2, 3),
                  target_affine=affine)

    # Invalid interpolation
    interpolation = 'an_invalid_interpolation'
    pattern = "interpolation must be either.+{0}".format(interpolation)
    testing.assert_raises_regex(ValueError, pattern,
                                resample_img, img, target_shape=target_shape,
                                target_affine=affine,
                                interpolation="an_invalid_interpolation")

    # Noop
    target_shape = shape[:3]

    img_r = resample_img(img, copy=False)
    assert_equal(img_r, img)

    img_r = resample_img(img, copy=True)
    assert_false(np.may_share_memory(img_r.get_data(), img.get_data()))

    np.testing.assert_almost_equal(img_r.get_data(), img.get_data())
    np.testing.assert_almost_equal(img_r.get_affine(), img.get_affine())

    img_r = resample_img(img, target_affine=affine, target_shape=target_shape,
                         copy=False)
    assert_equal(img_r, img)

    img_r = resample_img(img, target_affine=affine, target_shape=target_shape,
                         copy=True)
    assert_false(np.may_share_memory(img_r.get_data(), img.get_data()))
    np.testing.assert_almost_equal(img_r.get_data(), img.get_data())
    np.testing.assert_almost_equal(img_r.get_affine(), img.get_affine())
Exemplo n.º 14
0
def test_resampling_error_checks():
    shape = (3, 2, 5, 2)
    target_shape = (5, 3, 2)
    affine = np.eye(4)
    data = np.random.randint(0, 10, shape)
    img = Nifti1Image(data, affine)

    # Correct parameters: no exception
    resample_img(img, target_shape=target_shape, target_affine=affine)
    resample_img(img, target_affine=affine)

    with testing.write_tmp_imgs(img) as filename:
        resample_img(filename, target_shape=target_shape, target_affine=affine)

    # Missing parameter
    assert_raises(ValueError, resample_img, img, target_shape=target_shape)

    # Invalid shape
    assert_raises(ValueError, resample_img, img, target_shape=(2, 3),
                  target_affine=affine)

    # Invalid interpolation
    interpolation = 'an_invalid_interpolation'
    pattern = "interpolation must be either.+{0}".format(interpolation)
    testing.assert_raises_regex(ValueError, pattern,
                                resample_img, img, target_shape=target_shape,
                                target_affine=affine,
                                interpolation="an_invalid_interpolation")

    # Noop
    target_shape = shape[:3]

    img_r = resample_img(img, copy=False)
    assert_equal(img_r, img)

    img_r = resample_img(img, copy=True)
    assert_false(np.may_share_memory(img_r.get_data(), img.get_data()))

    np.testing.assert_almost_equal(img_r.get_data(), img.get_data())
    np.testing.assert_almost_equal(img_r.affine, img.affine)

    img_r = resample_img(img, target_affine=affine, target_shape=target_shape,
                         copy=False)
    assert_equal(img_r, img)

    img_r = resample_img(img, target_affine=affine, target_shape=target_shape,
                         copy=True)
    assert_false(np.may_share_memory(img_r.get_data(), img.get_data()))
    np.testing.assert_almost_equal(img_r.get_data(), img.get_data())
    np.testing.assert_almost_equal(img_r.affine, img.affine)
Exemplo n.º 15
0
def test_resample_img_segmentation_fault():
    # see https://github.com/nilearn/nilearn/issues/346
    shape_in = (64, 64, 64)
    aff_in = np.diag([2., 2., 2., 1.])
    aff_out = np.diag([3., 3., 3., 1.])
    # fourth_dim = 1024 works fine but for 1025 creates a segmentation
    # fault with scipy < 0.14.1
    fourth_dim = 1025
    data = np.ones(shape_in + (fourth_dim, ), dtype=np.float64)

    img_in = Nifti1Image(data, aff_in)

    resample_img(img_in,
                 target_affine=aff_out,
                 interpolation='nearest')
def linear_downsampling_generator(generator,
                                  max_downsampling_factor=2,
                                  isotropic=False):
    '''
    Downsamples each sample (linearly) by a random factor and upsamples to original resolution again (nearest neighbor).

    Info:
    * Uses nilearn resample_img for resampling.
    * If isotropic=True:  Resamples all dimensions (channels, x, y, z) with same downsampling factor
    * If isotropic=False: Randomly choose new downsampling factor for each dimension
    * Does not resample "seg".
    '''
    import nibabel as nib
    from nilearn.image.resampling import resample_img, resample_to_img

    for data_dict in generator:
        assert "data" in list(
            data_dict.keys()
        ), "your data generator needs to return a python dictionary with at least a 'data' key value pair"

        data = data_dict[
            'data']  # shape of data must be: (batch_size, nr_of_channels, x, y, [z])  (z ist optional; nr_of_channels can be 1)
        dim = len(
            data.shape[2:])  # remove batch_size and nr_of_channels dimension
        for sample_idx in range(data.shape[0]):

            fact = random.uniform(1, max_downsampling_factor)

            for channel_idx in range(data.shape[1]):

                affine = np.identity(4)
                if dim == 3:
                    img_data = data[sample_idx, channel_idx]
                elif dim == 2:
                    tmp = data[sample_idx, channel_idx]
                    img_data = np.reshape(
                        tmp, (1, tmp.shape[0], tmp.shape[1])
                    )  # add third spatial dimension to make resample_img work
                else:
                    raise ValueError("Invalid dimension size")

                image = nib.Nifti1Image(img_data, affine)
                affine2 = affine
                if isotropic:
                    affine2[0, 0] = fact
                    affine2[1, 1] = fact
                    affine2[2, 2] = fact
                else:
                    affine2[0, 0] = random.uniform(1, max_downsampling_factor)
                    affine2[1, 1] = random.uniform(1, max_downsampling_factor)
                    affine2[2, 2] = random.uniform(1, max_downsampling_factor)
                affine2[3, 3] = 1
                image2 = resample_img(image,
                                      target_affine=affine2,
                                      interpolation='continuous')
                image3 = resample_to_img(image2, image, 'nearest')
                data[sample_idx, channel_idx] = np.squeeze(image3.get_data())

        data_dict["data"] = data
        yield data_dict
Exemplo n.º 17
0
def test_resampling_result_axis_permutation():
    # Transform real data using easily checkable transformations
    # For now: axis permutations
    # create a cuboid full of deterministic data, padded with one
    # voxel thickness of zeros
    core_shape = (3, 5, 4)
    core_data = np.arange(np.prod(core_shape)).reshape(core_shape)
    full_data_shape = np.array(core_shape) + 2
    full_data = np.zeros(full_data_shape)
    full_data[[slice(1, 1 + s) for s in core_shape]] = core_data

    source_img = Nifti1Image(full_data, np.eye(4))

    axis_permutations = [[0, 1, 2],
                         [1, 0, 2],
                         [2, 1, 0],
                         [0, 2, 1]]

    # check 3x3 transformation matrix
    for ap in axis_permutations:
        target_affine = np.eye(3)[ap]
        resampled_img = resample_img(source_img,
                                     target_affine=target_affine)

        resampled_data = resampled_img.get_data()
        what_resampled_data_should_be = full_data.transpose(ap)
        assert_array_almost_equal(resampled_data,
                                  what_resampled_data_should_be)

    # check 4x4 transformation matrix
    offset = np.array([-2, 1, -3])
    for ap in axis_permutations:
        target_affine = np.eye(4)
        target_affine[:3, :3] = np.eye(3)[ap]
        target_affine[:3, 3] = offset

        resampled_img = resample_img(source_img,
                                     target_affine=target_affine)
        resampled_data = resampled_img.get_data()
        offset_cropping = np.vstack([-offset[ap][np.newaxis, :],
                                     np.zeros([1, 3])]
                                    ).T.ravel().astype(int)
        what_resampled_data_should_be = pad(full_data.transpose(ap),
                                            *list(offset_cropping))

        assert_array_almost_equal(resampled_data,
                                  what_resampled_data_should_be)
Exemplo n.º 18
0
def test_resampling_result_axis_permutation():
    # Transform real data using easily checkable transformations
    # For now: axis permutations
    # create a cuboid full of deterministic data, padded with one
    # voxel thickness of zeros
    core_shape = (3, 5, 4)
    core_data = np.arange(np.prod(core_shape)).reshape(core_shape)
    full_data_shape = np.array(core_shape) + 2
    full_data = np.zeros(full_data_shape)
    full_data[[slice(1, 1 + s) for s in core_shape]] = core_data

    source_img = Nifti1Image(full_data, np.eye(4))

    axis_permutations = [[0, 1, 2],
                         [1, 0, 2],
                         [2, 1, 0],
                         [0, 2, 1]]

    # check 3x3 transformation matrix
    for ap in axis_permutations:
        target_affine = np.eye(3)[ap]
        resampled_img = resample_img(source_img,
                                     target_affine=target_affine)

        resampled_data = resampled_img.get_data()
        what_resampled_data_should_be = full_data.transpose(ap)
        assert_array_almost_equal(resampled_data,
                                  what_resampled_data_should_be)

    # check 4x4 transformation matrix
    offset = np.array([-2, 1, -3])
    for ap in axis_permutations:
        target_affine = np.eye(4)
        target_affine[:3, :3] = np.eye(3)[ap]
        target_affine[:3, 3] = offset

        resampled_img = resample_img(source_img,
                                     target_affine=target_affine)
        resampled_data = resampled_img.get_data()
        offset_cropping = np.vstack([-offset[ap][np.newaxis, :],
                                     np.zeros([1, 3])]
                                    ).T.ravel().astype(int)
        what_resampled_data_should_be = pad(full_data.transpose(ap),
                                            *list(offset_cropping))

        assert_array_almost_equal(resampled_data,
                                  what_resampled_data_should_be)
Exemplo n.º 19
0
def resample(input_image,
             target_affine,
             target_shape,
             interpolation='continuous'):
    outim = resample_img(input_image,
                         target_affine=target_affine,
                         target_shape=target_shape,
                         interpolation=interpolation)
    return outim
Exemplo n.º 20
0
def test_resample_img_segmentation_fault():
    if 'APPVEYOR_TEST' in os.environ:
        raise(SkipTest('Skipped on appveyor due to not enough memory on image'))

    # see https://github.com/nilearn/nilearn/issues/346
    shape_in = (64, 64, 64)
    aff_in = np.diag([2., 2., 2., 1.])
    aff_out = np.diag([3., 3., 3., 1.])
    # fourth_dim = 1024 works fine but for 1025 creates a segmentation
    # fault with scipy < 0.14.1
    fourth_dim = 1025
    data = np.ones(shape_in + (fourth_dim, ), dtype=np.float64)

    img_in = Nifti1Image(data, aff_in)

    resample_img(img_in,
                 target_affine=aff_out,
                 interpolation='nearest')
Exemplo n.º 21
0
def test_resample_img_segmentation_fault():
    # see https://github.com/nilearn/nilearn/issues/346
    shape_in = (64, 64, 64)
    aff_in = np.diag([2., 2., 2., 1.])
    aff_out = np.diag([3., 3., 3., 1.])
    # fourth_dim = 1024 works fine but for 1025 creates a segmentation
    # fault with scipy < 0.14.1
    fourth_dim = 1025

    try:
        data = np.ones(shape_in + (fourth_dim, ), dtype=np.float64)
    except MemoryError:
        # This can happen on AppVeyor and for 32-bit Python on Windows
        pytest.skip('Not enough RAM to run this test')
    else:
        img_in = Nifti1Image(data, aff_in)

        resample_img(img_in, target_affine=aff_out, interpolation='nearest')
Exemplo n.º 22
0
def test_identity_resample():
    """ Test resampling with an identity affine.
    """
    shape = (3, 2, 5, 2)
    data = np.random.randint(0, 10, shape)
    affine = np.eye(4)
    affine[:3, -1] = 0.5 * np.array(shape[:3])
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=affine, interpolation='nearest')
    np.testing.assert_almost_equal(data, rot_img.get_data())
    # Smoke-test with a list affine
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=affine.tolist(),
                           interpolation='nearest')
    # Test with a 3x3 affine
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=affine[:3, :3],
                           interpolation='nearest')
    np.testing.assert_almost_equal(data, rot_img.get_data())
Exemplo n.º 23
0
def test_raises_bbox_error_if_data_outside_box():
    # Make some cases which should raise exceptions

    # original image
    data = np.zeros([8, 9, 10])
    affine = np.eye(4)
    affine_offset = np.array([1, 1, 1])
    affine[:3, 3] = affine_offset

    img = Nifti1Image(data, affine)

    # some axis flipping affines
    axis_flips = np.array(list(map(np.diag,
                              [[-1, 1, 1, 1],
                               [1, -1, 1, 1],
                               [1, 1, -1, 1],
                               [-1, -1, 1, 1],
                               [-1, 1, -1, 1],
                               [1, -1, -1, 1]])))

    # some in plane 90 degree rotations base on these
    # (by permuting two lines)
    af = axis_flips
    rotations = np.array([af[0][[1, 0, 2, 3]],
                          af[0][[2, 1, 0, 3]],
                          af[1][[1, 0, 2, 3]],
                          af[1][[0, 2, 1, 3]],
                          af[2][[2, 1, 0, 3]],
                          af[2][[0, 2, 1, 3]]])

    new_affines = np.concatenate([axis_flips,
                                  rotations])
    new_offset = np.array([0., 0., 0.])
    new_affines[:, :3, 3] = new_offset[np.newaxis, :]

    for new_affine in new_affines:
        exception = BoundingBoxError
        message = ("The field of view given "
                   "by the target affine does "
                   "not contain any of the data")

        with pytest.raises(exception, match=message):
            resample_img(img, target_affine=new_affine)
Exemplo n.º 24
0
def _resample_img(path,
                  target_affine=None,
                  target_shape=None,
                  interpolation='continuous'):
    img = resample_img(path,
                       target_affine,
                       target_shape,
                       interpolation,
                       copy=False)
    nb.save(img, path)
Exemplo n.º 25
0
def test_downsample():
    """ Test resampling with a 1/2 down-sampling affine.
    """
    rand_gen = np.random.RandomState(0)
    shape = (6, 3, 6, 2)
    data = rand_gen.random_sample(shape)
    affine = np.eye(4)
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=2 * affine,
                           interpolation='nearest')
    downsampled = data[::2, ::2, ::2, ...]
    x, y, z = downsampled.shape[:3]
    np.testing.assert_almost_equal(downsampled,
                                   rot_img.get_data()[:x, :y, :z, ...])

    rot_img_2 = resample_img(Nifti1Image(data, affine),
                             target_affine=2 * affine,
                             interpolation='nearest',
                             force_resample=True)
    np.testing.assert_almost_equal(rot_img_2.get_data(), rot_img.get_data())
    # Test with non native endian data

    # Test to check that if giving non native endian data as input should
    # work as normal and expected to return the same output as above tests.

    # Big endian data ('>f8')
    for copy in [True, False]:
        rot_img = resample_img(Nifti1Image(data.astype('>f8'), affine),
                               target_affine=2 * affine,
                               interpolation='nearest',
                               copy=copy)
        np.testing.assert_almost_equal(downsampled,
                                       rot_img.get_data()[:x, :y, :z, ...])

    # Little endian data
    for copy in [True, False]:
        rot_img = resample_img(Nifti1Image(data.astype('<f8'), affine),
                               target_affine=2 * affine,
                               interpolation='nearest',
                               copy=copy)
        np.testing.assert_almost_equal(downsampled,
                                       rot_img.get_data()[:x, :y, :z, ...])
Exemplo n.º 26
0
def test_identity_resample():
    """ Test resampling with an identity affine.
    """
    shape = (3, 2, 5, 2)
    data = np.random.randint(0, 10, shape)
    affine = np.eye(4)
    affine[:3, -1] = 0.5 * np.array(shape[:3])
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=affine,
                           interpolation='nearest')
    np.testing.assert_almost_equal(data, rot_img.get_data())
    # Smoke-test with a list affine
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=affine.tolist(),
                           interpolation='nearest')
    # Test with a 3x3 affine
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=affine[:3, :3],
                           interpolation='nearest')
    np.testing.assert_almost_equal(data, rot_img.get_data())
Exemplo n.º 27
0
def test_resample_img_segmentation_fault():
    # see https://github.com/nilearn/nilearn/issues/346
    shape_in = (64, 64, 64)
    aff_in = np.diag([2., 2., 2., 1.])
    aff_out = np.diag([3., 3., 3., 1.])
    # fourth_dim = 1024 works fine but for 1025 creates a segmentation
    # fault with scipy < 0.14.1
    fourth_dim = 1025

    try:
        data = np.ones(shape_in + (fourth_dim, ), dtype=np.float64)
    except MemoryError:
        # This can happen on AppVeyor and for 32-bit Python on Windows
        raise SkipTest('Not enough RAM to run this test')

    img_in = Nifti1Image(data, aff_in)

    resample_img(img_in,
                 target_affine=aff_out,
                 interpolation='nearest')
Exemplo n.º 28
0
def test_resampling_with_affine():
    """ Test resampling with a given rotation part of the affine.
    """
    prng = np.random.RandomState(10)
    data = prng.randint(4, size=(1, 4, 4))
    for angle in (0, np.pi, np.pi / 2, np.pi / 4, np.pi / 3):
        rot = rotation(0, angle)
        rot_img = resample_img(Nifti1Image(data, np.eye(4)),
                               target_affine=rot,
                               interpolation='nearest')
        np.testing.assert_almost_equal(np.max(data),
                                       np.max(rot_img.get_data()))
Exemplo n.º 29
0
def test_resample_img_segmentation_fault():
    if os.environ.get('APPVEYOR') == 'True':
        raise SkipTest('This test too slow (7-8 minutes) on AppVeyor')

    # see https://github.com/nilearn/nilearn/issues/346
    shape_in = (64, 64, 64)
    aff_in = np.diag([2., 2., 2., 1.])
    aff_out = np.diag([3., 3., 3., 1.])
    # fourth_dim = 1024 works fine but for 1025 creates a segmentation
    # fault with scipy < 0.14.1
    fourth_dim = 1025

    try:
        data = np.ones(shape_in + (fourth_dim, ), dtype=np.float64)
    except MemoryError:
        # This can happen on AppVeyor and for 32-bit Python on Windows
        raise SkipTest('Not enough RAM to run this test')

    img_in = Nifti1Image(data, aff_in)

    resample_img(img_in, target_affine=aff_out, interpolation='nearest')
Exemplo n.º 30
0
def test_resampling_with_affine():
    """ Test resampling with a given rotation part of the affine.
    """
    prng = np.random.RandomState(10)
    data = prng.randint(4, size=(1, 4, 4))
    for angle in (0, np.pi, np.pi / 2., np.pi / 4., np.pi / 3.):
        rot = rotation(0, angle)
        rot_img = resample_img(Nifti1Image(data, np.eye(4)),
                               target_affine=rot,
                               interpolation='nearest')
        np.testing.assert_almost_equal(np.max(data),
                                       np.max(rot_img.get_data()))
def linear_downsampling_generator(generator, max_downsampling_factor=2, isotropic=False):
    '''
    Downsamples each sample (linearly) by a random factor and upsamples to original resolution again (nearest neighbor).

    Info:
    * Uses nilearn resample_img for resampling.
    * If isotropic=True:  Resamples all dimensions (channels, x, y, z) with same downsampling factor
    * If isotropic=False: Randomly choose new downsampling factor for each dimension
    * Does not resample "seg".
    '''
    import nibabel as nib
    from nilearn.image.resampling import resample_img, resample_to_img

    for data_dict in generator:
        assert "data" in list(
            data_dict.keys()), "your data generator needs to return a python dictionary with at least a 'data' key value pair"

        data = data_dict[
            'data']  # shape of data must be: (batch_size, nr_of_channels, x, y, [z])  (z ist optional; nr_of_channels can be 1)
        dim = len(data.shape[2:])  # remove batch_size and nr_of_channels dimension
        for sample_idx in range(data.shape[0]):

            fact = random.uniform(1, max_downsampling_factor)

            for channel_idx in range(data.shape[1]):

                affine = np.identity(4)
                if dim == 3:
                    img_data = data[sample_idx, channel_idx]
                elif dim == 2:
                    tmp = data[sample_idx, channel_idx]
                    img_data = np.reshape(tmp, (
                    1, tmp.shape[0], tmp.shape[1]))  # add third spatial dimension to make resample_img work
                else:
                    raise ValueError("Invalid dimension size")

                image = nib.Nifti1Image(img_data, affine)
                affine2 = affine
                if isotropic:
                    affine2[0, 0] = fact
                    affine2[1, 1] = fact
                    affine2[2, 2] = fact
                else:
                    affine2[0, 0] = random.uniform(1, max_downsampling_factor)
                    affine2[1, 1] = random.uniform(1, max_downsampling_factor)
                    affine2[2, 2] = random.uniform(1, max_downsampling_factor)
                affine2[3, 3] = 1
                image2 = resample_img(image, target_affine=affine2, interpolation='continuous')
                image3 = resample_to_img(image2, image, 'nearest')
                data[sample_idx, channel_idx] = np.squeeze(image3.get_data())

        data_dict["data"] = data
        yield data_dict
Exemplo n.º 32
0
def test_downsample():
    """ Test resampling with a 1/2 down-sampling affine.
    """
    rand_gen = np.random.RandomState(0)
    shape = (6, 3, 6, 2)
    data = rand_gen.random_sample(shape)
    affine = np.eye(4)
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=2 * affine, interpolation='nearest')
    downsampled = data[::2, ::2, ::2, ...]
    x, y, z = downsampled.shape[:3]
    np.testing.assert_almost_equal(downsampled,
                                   rot_img.get_data()[:x, :y, :z, ...])
Exemplo n.º 33
0
def augment_linear_downsampling_nilearn(data,
                                        max_downsampling_factor=2,
                                        isotropic=False):
    '''
    Downsamples each sample (linearly) by a random factor and upsamples to original resolution again (nearest neighbor).

    Info:
    * Uses nilearn resample_img for resampling.
    * If isotropic=True:  Resamples all channels (channels, x, y, z) with same downsampling factor
    * If isotropic=False: Randomly choose new downsampling factor for each dimension
    '''
    import nibabel as nib
    from nilearn.image.resampling import resample_img, resample_to_img

    dim = len(data.shape[2:])  # remove batch_size and nr_of_channels dimension
    for sample_idx in range(data.shape[0]):

        fact = random.uniform(1, max_downsampling_factor)

        for channel_idx in range(data.shape[1]):

            affine = np.identity(4)
            if dim == 3:
                img_data = data[sample_idx, channel_idx]
            elif dim == 2:
                tmp = data[sample_idx, channel_idx]
                img_data = np.reshape(
                    tmp, (1, tmp.shape[0], tmp.shape[1])
                )  # add third spatial dimension to make resample_img work
            else:
                raise ValueError("Invalid dimension size")

            image = nib.Nifti1Image(img_data, affine)
            affine2 = affine
            if isotropic:
                affine2[0, 0] = fact
                affine2[1, 1] = fact
                affine2[2, 2] = fact
            else:
                affine2[0, 0] = random.uniform(1, max_downsampling_factor)
                affine2[1, 1] = random.uniform(1, max_downsampling_factor)
                affine2[2, 2] = random.uniform(1, max_downsampling_factor)
            affine2[3, 3] = 1
            image2 = resample_img(image,
                                  target_affine=affine2,
                                  interpolation='continuous')
            image3 = resample_to_img(image2, image, 'nearest')

        data[sample_idx, channel_idx] = np.squeeze(image3.get_data())
    return data
Exemplo n.º 34
0
def test_downsample():
    """ Test resampling with a 1/2 down-sampling affine.
    """
    rand_gen = np.random.RandomState(0)
    shape = (6, 3, 6, 2)
    data = rand_gen.random_sample(shape)
    affine = np.eye(4)
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=2 * affine,
                           interpolation='nearest')
    downsampled = data[::2, ::2, ::2, ...]
    x, y, z = downsampled.shape[:3]
    np.testing.assert_almost_equal(downsampled,
                                   rot_img.get_data()[:x, :y, :z, ...])
Exemplo n.º 35
0
def test_identity_resample():
    """ Test resampling with an identity affine.
    """
    rng = np.random.RandomState(42)
    shape = (3, 2, 5, 2)
    data = rng.randint(0, 10, shape)
    affine = np.eye(4)
    affine[:3, -1] = 0.5 * np.array(shape[:3])
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=affine,
                           interpolation='nearest')
    np.testing.assert_almost_equal(data, get_data(rot_img))
    # Smoke-test with a list affine
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=affine.tolist(),
                           interpolation='nearest')
    # Test with a 3x3 affine
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=affine[:3, :3],
                           interpolation='nearest')
    np.testing.assert_almost_equal(data, get_data(rot_img))

    # Test with non native endian data

    # Test with big endian data ('>f8')
    for interpolation in ['nearest', 'linear', 'continuous']:
        rot_img = resample_img(Nifti1Image(data.astype('>f8'), affine),
                               target_affine=affine.tolist(),
                               interpolation=interpolation)
        np.testing.assert_almost_equal(data, get_data(rot_img))

    # Test with little endian data ('<f8')
    for interpolation in ['nearest', 'linear', 'continuous']:
        rot_img = resample_img(Nifti1Image(data.astype('<f8'), affine),
                               target_affine=affine.tolist(),
                               interpolation=interpolation)
        np.testing.assert_almost_equal(data, get_data(rot_img))
Exemplo n.º 36
0
def test_downsample():
    """ Test resampling with a 1/2 down-sampling affine.
    """
    rand_gen = np.random.RandomState(0)
    shape = (6, 3, 6, 2)
    data = rand_gen.random_sample(shape)
    affine = np.eye(4)
    rot_img = resample_img(Nifti1Image(data, affine),
                           target_affine=2 * affine, interpolation='nearest')
    downsampled = data[::2, ::2, ::2, ...]
    x, y, z = downsampled.shape[:3]
    np.testing.assert_almost_equal(downsampled,
                                   rot_img.get_data()[:x, :y, :z, ...])

    # Test with non native endian data

    # Test to check that if giving non native endian data as input should
    # work as normal and expected to return the same output as above tests.

    # Big endian data ('>f8')
    for copy in [True, False]:
        rot_img = resample_img(Nifti1Image(data.astype('>f8'), affine),
                               target_affine=2 * affine,
                               interpolation='nearest',
                               copy=copy)
        np.testing.assert_almost_equal(downsampled,
                                       rot_img.get_data()[:x, :y, :z, ...])

    # Little endian data
    for copy in [True, False]:
        rot_img = resample_img(Nifti1Image(data.astype('<f8'), affine),
                               target_affine=2 * affine,
                               interpolation='nearest',
                               copy=copy)
        np.testing.assert_almost_equal(downsampled,
                                       rot_img.get_data()[:x, :y, :z, ...])
Exemplo n.º 37
0
def test_resample_clip():
    # Resample and image and get larger and smaller
    # value than in the original. Use clip to get rid of these images

    shape = (6, 3, 6)
    data = np.zeros(shape=shape)
    data[1:-2, 1:-1, 1:-2] = 1

    source_affine = np.diag((2, 2, 2, 1))
    source_img = Nifti1Image(data, source_affine)

    target_affine = np.eye(4)
    no_clip_data = resample_img(source_img, target_affine,
                                clip=False).get_data()
    clip_data = resample_img(source_img,
                             target_affine, clip=True).get_data()

    not_clip = np.where((no_clip_data > data.min()) & (no_clip_data < data.max()))

    assert_true(np.any(no_clip_data > data.max()))
    assert_true(np.any(no_clip_data < data.min()))
    assert_true(np.all(clip_data <= data.max()))
    assert_true(np.all(clip_data >= data.min()))
    assert_array_equal(no_clip_data[not_clip], clip_data[not_clip])
Exemplo n.º 38
0
    def _get_resampled_img(dtype):
        data = np.ones((10, 10, 10), dtype=dtype)
        data[3:7, 3:7, 3:7] = 2

        affine = np.eye(4)

        theta = math.pi / 6.
        c = math.cos(theta)
        s = math.sin(theta)

        affine = np.array([[1, 0, 0, 0], [0, c, -s, 0], [0, s, c, 0],
                           [0, 0, 0, 1]])

        img = Nifti1Image(data, affine)
        return resample_img(img, target_affine=np.eye(4))
Exemplo n.º 39
0
def test_resample_clip():
    # Resample and image and get larger and smaller
    # value than in the original. Use clip to get rid of these images

    shape = (6, 3, 6)
    data = np.zeros(shape=shape)
    data[1:-2, 1:-1, 1:-2] = 1

    source_affine = np.diag((2, 2, 2, 1))
    source_img = Nifti1Image(data, source_affine)

    target_affine = np.eye(4)
    no_clip_data = resample_img(source_img, target_affine,
                                clip=False).get_data()
    clip_data = resample_img(source_img, target_affine, clip=True).get_data()

    not_clip = np.where((no_clip_data > data.min())
                        & (no_clip_data < data.max()))

    assert_true(np.any(no_clip_data > data.max()))
    assert_true(np.any(no_clip_data < data.min()))
    assert_true(np.all(clip_data <= data.max()))
    assert_true(np.all(clip_data >= data.min()))
    assert_array_equal(no_clip_data[not_clip], clip_data[not_clip])
Exemplo n.º 40
0
def resample(input_image,
             target_affine,
             target_shape,
             interpolation='continuous'):
    input_image_data = input_image.get_data()
    nan_mask = numpy.isnan(input_image_data)
    if numpy.any(nan_mask):
        input_image_data[nan_mask] = 0.0
        input_image = nibabel.Nifti1Image(input_image_data,
                                          input_image.get_affine())
    outim = resample_img(input_image,
                         target_affine=target_affine,
                         target_shape=target_shape,
                         interpolation=interpolation)
    return outim
Exemplo n.º 41
0
def test_resampling_with_affine():
    """ Test resampling with a given rotation part of the affine.
    """
    prng = np.random.RandomState(10)

    data_3d = prng.randint(4, size=(1, 4, 4))
    data_4d = prng.randint(4, size=(1, 4, 4, 3))

    for data in [data_3d, data_4d]:
        for angle in (0, np.pi, np.pi / 2., np.pi / 4., np.pi / 3.):
            rot = rotation(0, angle)
            rot_img = resample_img(Nifti1Image(data, np.eye(4)),
                                   target_affine=rot,
                                   interpolation='nearest')
            assert_equal(np.max(data), np.max(rot_img.get_data()))
            assert_equal(rot_img.get_data().dtype, data.dtype)
Exemplo n.º 42
0
def test_mean_img_resample():
    # Test resampling in mean_img with a permutation of the axes
    rng = np.random.RandomState(42)
    data = rng.rand(5, 6, 7, 40)
    affine = np.diag((4, 3, 2, 1))
    img = nibabel.Nifti1Image(data, affine=affine)
    mean_img = nibabel.Nifti1Image(data.mean(axis=-1), affine=affine)

    target_affine = affine[:, [1, 0, 2, 3]]  # permutation of axes
    mean_img_with_resampling = image.mean_img(img, target_affine=target_affine)
    resampled_mean_image = resampling.resample_img(mean_img,
                                                   target_affine=target_affine)
    assert_array_equal(resampled_mean_image.get_data(),
                       mean_img_with_resampling.get_data())
    assert_array_equal(resampled_mean_image.get_affine(),
                       mean_img_with_resampling.get_affine())
    assert_array_equal(mean_img_with_resampling.get_affine(), target_affine)
Exemplo n.º 43
0
    def _get_resampled_img(dtype):
        data = np.ones((10, 10, 10), dtype=dtype)
        data[3:7, 3:7, 3:7] = 2

        affine = np.eye(4)

        theta = math.pi / 6.
        c = math.cos(theta)
        s = math.sin(theta)

        affine = np.array([[1, 0, 0, 0],
                           [0, c, -s, 0],
                           [0, s, c, 0],
                           [0, 0, 0, 1]])

        img = Nifti1Image(data, affine)
        return resample_img(img, target_affine=np.eye(4))
def augment_linear_downsampling_nilearn(data, max_downsampling_factor=2, isotropic=False):
    '''
    Downsamples each sample (linearly) by a random factor and upsamples to original resolution again (nearest neighbor).

    Info:
    * Uses nilearn resample_img for resampling.
    * If isotropic=True:  Resamples all channels (channels, x, y, z) with same downsampling factor
    * If isotropic=False: Randomly choose new downsampling factor for each dimension
    '''
    import nibabel as nib
    from nilearn.image.resampling import resample_img, resample_to_img

    dim = len(data.shape[2:])  # remove batch_size and nr_of_channels dimension
    for sample_idx in range(data.shape[0]):

        fact = random.uniform(1, max_downsampling_factor)

        for channel_idx in range(data.shape[1]):

            affine = np.identity(4)
            if dim == 3:
                img_data = data[sample_idx, channel_idx]
            elif dim == 2:
                tmp = data[sample_idx, channel_idx]
                img_data = np.reshape(tmp, (
                1, tmp.shape[0], tmp.shape[1]))  # add third spatial dimension to make resample_img work
            else:
                raise ValueError("Invalid dimension size")

            image = nib.Nifti1Image(img_data, affine)
            affine2 = affine
            if isotropic:
                affine2[0, 0] = fact
                affine2[1, 1] = fact
                affine2[2, 2] = fact
            else:
                affine2[0, 0] = random.uniform(1, max_downsampling_factor)
                affine2[1, 1] = random.uniform(1, max_downsampling_factor)
                affine2[2, 2] = random.uniform(1, max_downsampling_factor)
            affine2[3, 3] = 1
            image2 = resample_img(image, target_affine=affine2, interpolation='continuous')
            image3 = resample_to_img(image2, image, 'nearest')

        data[sample_idx, channel_idx] = np.squeeze(image3.get_data())
    return data
Exemplo n.º 45
0
def test_mean_img_resample():
    # Test resampling in mean_img with a permutation of the axes
    rng = np.random.RandomState(42)
    data = rng.rand(5, 6, 7, 40)
    affine = np.diag((4, 3, 2, 1))
    img = nibabel.Nifti1Image(data, affine=affine)
    mean_img = nibabel.Nifti1Image(data.mean(axis=-1), affine=affine)

    target_affine = affine[:, [1, 0, 2, 3]]  # permutation of axes
    mean_img_with_resampling = image.mean_img(img,
                                              target_affine=target_affine)
    resampled_mean_image = resampling.resample_img(mean_img,
                                              target_affine=target_affine)
    assert_array_equal(resampled_mean_image.get_data(),
                       mean_img_with_resampling.get_data())
    assert_array_equal(resampled_mean_image.get_affine(),
                       mean_img_with_resampling.get_affine())
    assert_array_equal(mean_img_with_resampling.get_affine(), target_affine)
Exemplo n.º 46
0
def test_3x3_affine_bbox():
    # Test that the bounding-box is properly computed when
    # transforming with a negative affine component
    # This is specifically to test for a change in behavior between
    # scipy < 0.18 and scipy >= 0.18, which is an interaction between
    # offset and a diagonal affine
    image = np.ones((20, 30))
    source_affine = np.eye(4)
    # Give the affine an offset
    source_affine[:2, 3] = np.array([96, 64])

    # We need to turn this data into a nibabel image
    img = Nifti1Image(image[:, :, np.newaxis], affine=source_affine)

    target_affine_3x3 = np.eye(3) * 2
    # One negative axes
    target_affine_3x3[1] *= -1

    img_3d_affine = resample_img(img, target_affine=target_affine_3x3)

    # If the bounding box is computed wrong, the image will be only
    # zeros
    np.testing.assert_allclose(img_3d_affine.get_data().max(), image.max())
Exemplo n.º 47
0
def test_3x3_affine_bbox():
    # Test that the bounding-box is properly computed when
    # transforming with a negative affine component
    # This is specifically to test for a change in behavior between
    # scipy < 0.18 and scipy >= 0.18, which is an interaction between
    # offset and a diagonal affine
    image = np.ones((20, 30))
    source_affine = np.eye(4)
    # Give the affine an offset
    source_affine[:2, 3] = np.array([96, 64])

    # We need to turn this data into a nibabel image
    img = Nifti1Image(image[:, :, np.newaxis], affine=source_affine)

    target_affine_3x3 = np.eye(3) * 2
    # One negative axes
    target_affine_3x3[1] *= -1

    img_3d_affine = resample_img(img, target_affine=target_affine_3x3)

    # If the bounding box is computed wrong, the image will be only
    # zeros
    np.testing.assert_allclose(img_3d_affine.get_data().max(), image.max())
Exemplo n.º 48
0
def test_resampling_error_checks():
    rng = np.random.RandomState(42)
    shape = (3, 2, 5, 2)
    target_shape = (5, 3, 2)
    affine = np.eye(4)
    data = rng.randint(0, 10, shape)
    img = Nifti1Image(data, affine)

    # Correct parameters: no exception
    resample_img(img, target_shape=target_shape, target_affine=affine)
    resample_img(img, target_affine=affine)

    with testing.write_tmp_imgs(img) as filename:
        resample_img(filename, target_shape=target_shape, target_affine=affine)

    # Missing parameter
    pytest.raises(ValueError, resample_img, img, target_shape=target_shape)

    # Invalid shape
    pytest.raises(ValueError, resample_img, img, target_shape=(2, 3),
                  target_affine=affine)

    # Invalid interpolation
    interpolation = 'an_invalid_interpolation'
    pattern = "interpolation must be either.+{0}".format(interpolation)
    with pytest.raises(ValueError, match=pattern):
        resample_img(img,
                     target_shape=target_shape,
                     target_affine=affine,
                     interpolation="an_invalid_interpolation"
                     )

    # Noop
    target_shape = shape[:3]

    img_r = resample_img(img, copy=False)
    assert img_r == img

    img_r = resample_img(img, copy=True)
    assert not np.may_share_memory(get_data(img_r), get_data(img))

    np.testing.assert_almost_equal(get_data(img_r), get_data(img))
    np.testing.assert_almost_equal(img_r.affine, img.affine)

    img_r = resample_img(img, target_affine=affine, target_shape=target_shape,
                         copy=False)
    assert img_r == img

    img_r = resample_img(img, target_affine=affine, target_shape=target_shape,
                         copy=True)
    assert not np.may_share_memory(get_data(img_r), get_data(img))
    np.testing.assert_almost_equal(get_data(img_r), get_data(img))
    np.testing.assert_almost_equal(img_r.affine, img.affine)
Exemplo n.º 49
0
def test_reorder_img():
    # We need to test on a square array, as rotation does not change
    # shape, whereas reordering does.
    shape = (5, 5, 5, 2, 2)
    rng = np.random.RandomState(42)
    data = rng.rand(*shape)
    affine = np.eye(4)
    affine[:3, -1] = 0.5 * np.array(shape[:3])
    ref_img = Nifti1Image(data, affine)
    # Test with purely positive matrices and compare to a rotation
    for theta, phi in np.random.randint(4, size=(5, 2)):
        rot = rotation(theta * np.pi / 2, phi * np.pi / 2)
        rot[np.abs(rot) < 0.001] = 0
        rot[rot > 0.9] = 1
        rot[rot < -0.9] = 1
        b = 0.5 * np.array(shape[:3])
        new_affine = from_matrix_vector(rot, b)
        rot_img = resample_img(ref_img, target_affine=new_affine)
        np.testing.assert_array_equal(rot_img.affine, new_affine)
        np.testing.assert_array_equal(rot_img.get_data().shape, shape)
        reordered_img = reorder_img(rot_img)
        np.testing.assert_array_equal(reordered_img.affine[:3, :3], np.eye(3))
        np.testing.assert_almost_equal(reordered_img.get_data(), data)

    # Create a non-diagonal affine, and check that we raise a sensible
    # exception
    affine[1, 0] = 0.1
    ref_img = Nifti1Image(data, affine)
    testing.assert_raises_regex(ValueError, 'Cannot reorder the axes',
                                reorder_img, ref_img)

    # Test that no exception is raised when resample='continuous'
    reorder_img(ref_img, resample='continuous')

    # Test that resample args gets passed to resample_img
    interpolation = 'nearest'
    reordered_img = reorder_img(ref_img, resample=interpolation)
    resampled_img = resample_img(ref_img,
                                 target_affine=reordered_img.affine,
                                 interpolation=interpolation)
    np.testing.assert_array_equal(reordered_img.get_data(),
                                  resampled_img.get_data())

    # Make sure invalid resample argument is included in the error message
    interpolation = 'an_invalid_interpolation'
    pattern = "interpolation must be either.+{0}".format(interpolation)
    testing.assert_raises_regex(ValueError,
                                pattern,
                                reorder_img,
                                ref_img,
                                resample=interpolation)

    # Test flipping an axis
    data = rng.rand(*shape)
    for i in (0, 1, 2):
        # Make a diagonal affine with a negative axis, and check that
        # can be reordered, also vary the shape
        shape = (i + 1, i + 2, 3 - i)
        affine = np.eye(4)
        affine[i, i] *= -1
        img = Nifti1Image(data, affine)
        orig_img = copy.copy(img)
        #x, y, z = img.get_world_coords()
        #sample = img.values_in_world(x, y, z)
        img2 = reorder_img(img)
        # Check that img has not been changed
        np.testing.assert_array_equal(img.affine, orig_img.affine)
        np.testing.assert_array_equal(img.get_data(), orig_img.get_data())
        # Test that the affine is indeed diagonal:
        np.testing.assert_array_equal(img2.affine[:3, :3],
                                      np.diag(np.diag(img2.affine[:3, :3])))
        assert_true(np.all(np.diag(img2.affine) >= 0))
Exemplo n.º 50
0
def test_resampling_error_checks():
    rng = np.random.RandomState(42)
    shape = (3, 2, 5, 2)
    target_shape = (5, 3, 2)
    affine = np.eye(4)
    data = rng.randint(0, 10, shape)
    img = Nifti1Image(data, affine)

    # Correct parameters: no exception
    resample_img(img, target_shape=target_shape, target_affine=affine)
    resample_img(img, target_affine=affine)

    with testing.write_tmp_imgs(img) as filename:
        resample_img(filename, target_shape=target_shape, target_affine=affine)

    # Missing parameter
    pytest.raises(ValueError, resample_img, img, target_shape=target_shape)

    # Invalid shape
    pytest.raises(ValueError,
                  resample_img,
                  img,
                  target_shape=(2, 3),
                  target_affine=affine)

    # Invalid interpolation
    interpolation = 'an_invalid_interpolation'
    pattern = "interpolation must be either.+{0}".format(interpolation)
    with pytest.raises(ValueError, match=pattern):
        resample_img(img,
                     target_shape=target_shape,
                     target_affine=affine,
                     interpolation="an_invalid_interpolation")

    # Resampling a binary image with continuous or
    # linear interpolation should raise a warning.
    data_binary = rng.randint(4, size=(1, 4, 4))
    data_binary[data_binary > 0] = 1
    assert sorted(list(np.unique(data_binary))) == [0, 1]

    rot = rotation(0, np.pi / 4)
    img_binary = Nifti1Image(data_binary, np.eye(4))
    assert _utils.niimg._is_binary_niimg(img_binary)

    with pytest.warns(Warning, match="Resampling binary images with"):
        rot_img = resample_img(img_binary,
                               target_affine=rot,
                               interpolation='continuous')

    with pytest.warns(Warning, match="Resampling binary images with"):
        rot_img = resample_img(img_binary,
                               target_affine=rot,
                               interpolation='linear')

    # Noop
    target_shape = shape[:3]

    img_r = resample_img(img, copy=False)
    assert img_r == img

    img_r = resample_img(img, copy=True)
    assert not np.may_share_memory(get_data(img_r), get_data(img))

    np.testing.assert_almost_equal(get_data(img_r), get_data(img))
    np.testing.assert_almost_equal(img_r.affine, img.affine)

    img_r = resample_img(img,
                         target_affine=affine,
                         target_shape=target_shape,
                         copy=False)
    assert img_r == img

    img_r = resample_img(img,
                         target_affine=affine,
                         target_shape=target_shape,
                         copy=True)
    assert not np.may_share_memory(get_data(img_r), get_data(img))
    np.testing.assert_almost_equal(get_data(img_r), get_data(img))
    np.testing.assert_almost_equal(img_r.affine, img.affine)
Exemplo n.º 51
0
def _resample_img(path, target_affine=None, target_shape=None,
                  interpolation='continuous'):
    img = resample_img(path, target_affine, target_shape,
                       interpolation, copy=False)
    nb.save(img, path)
Exemplo n.º 52
0
def test_reorder_img():
    # We need to test on a square array, as rotation does not change
    # shape, whereas reordering does.
    shape = (5, 5, 5, 2, 2)
    rng = np.random.RandomState(42)
    data = rng.rand(*shape)
    affine = np.eye(4)
    affine[:3, -1] = 0.5 * np.array(shape[:3])
    ref_img = Nifti1Image(data, affine)
    # Test with purely positive matrices and compare to a rotation
    for theta, phi in np.random.randint(4, size=(5, 2)):
        rot = rotation(theta * np.pi / 2, phi * np.pi / 2)
        rot[np.abs(rot) < 0.001] = 0
        rot[rot > 0.9] = 1
        rot[rot < -0.9] = 1
        b = 0.5 * np.array(shape[:3])
        new_affine = from_matrix_vector(rot, b)
        rot_img = resample_img(ref_img, target_affine=new_affine)
        np.testing.assert_array_equal(rot_img.get_affine(), new_affine)
        np.testing.assert_array_equal(rot_img.get_data().shape, shape)
        reordered_img = reorder_img(rot_img)
        np.testing.assert_array_equal(reordered_img.get_affine()[:3, :3],
                                      np.eye(3))
        np.testing.assert_almost_equal(reordered_img.get_data(),
                                       data)

    # Create a non-diagonal affine, and check that we raise a sensible
    # exception
    affine[1, 0] = 0.1
    ref_img = Nifti1Image(data, affine)
    testing.assert_raises_regex(ValueError, 'Cannot reorder the axes',
                                reorder_img, ref_img)

    # Test that no exception is raised when resample='continuous'
    reorder_img(ref_img, resample='continuous')

    # Test that resample args gets passed to resample_img
    interpolation = 'nearest'
    reordered_img = reorder_img(ref_img, resample=interpolation)
    resampled_img = resample_img(ref_img,
                                 target_affine=reordered_img.get_affine(),
                                 interpolation=interpolation)
    np.testing.assert_array_equal(reordered_img.get_data(),
                                  resampled_img.get_data())

    # Make sure invalid resample argument is included in the error message
    interpolation = 'an_invalid_interpolation'
    pattern = "interpolation must be either.+{0}".format(interpolation)
    testing.assert_raises_regex(ValueError, pattern,
                                reorder_img, ref_img,
                                resample=interpolation)

    # Test flipping an axis
    data = rng.rand(*shape)
    for i in (0, 1, 2):
        # Make a diagonal affine with a negative axis, and check that
        # can be reordered, also vary the shape
        shape = (i + 1, i + 2, 3 - i)
        affine = np.eye(4)
        affine[i, i] *= -1
        img = Nifti1Image(data, affine)
        orig_img = copy.copy(img)
        #x, y, z = img.get_world_coords()
        #sample = img.values_in_world(x, y, z)
        img2 = reorder_img(img)
        # Check that img has not been changed
        np.testing.assert_array_equal(img.get_affine(),
                                      orig_img.get_affine())
        np.testing.assert_array_equal(img.get_data(),
                                      orig_img.get_data())
        # Test that the affine is indeed diagonal:
        np.testing.assert_array_equal(img2.get_affine()[:3, :3],
                                      np.diag(np.diag(
                                              img2.get_affine()[:3, :3])))
        assert_true(np.all(np.diag(img2.get_affine()) >= 0))