Exemplo n.º 1
0
 def hrfplot2(in_file, maxT):
     import numpy as np
     import matplotlib.pyplot as plt
     from pylab import figure, axes, pie, title, show
     from nipy.modalities.fmri import hrf
     from nipy.modalities.fmri.utils import T, lambdify_t
     import csv
     with open(in_file) as f:
         reader = csv.reader(f, delimiter=str("\t"))
         d = list(reader)
     mat = np.array(d)
     onsets = mat[:, 0]
     int_lst_onsets = [int(float(x)) for x in onsets]
     int_lst_onsets.sort()
     glover = hrf.glover(T)
     tb = int_lst_onsets
     bb = 1
     nb = bb * sum([glover.subs(T, T - t) for t in tb])
     nbv = lambdify_t(nb)
     t = np.linspace(0, float(maxT), 10000)
     plt.plot(t, nbv(t), c='b', label=in_file)
     for t in tb:
         plt.plot([t, t], [0, bb * 0.1], c='r')
     plt.legend()
     plt.show()
Exemplo n.º 2
0
def convolve_regressors(paradigm, hrf_model, end_time, fir_delays=[0],
                        fir_duration=1.):
    """ Creation of  a formula that represents
    the convolution of the conditions onset with a certain hrf model

    Parameters
    ----------
    paradigm: paradigm instance
    hrf_model: string that can be 'Canonical',
               'Canonical With Derivative' or 'FIR'
               that specifies the hemodynamic reponse function
    end_time: float,
              end time of the paradigm (needed only for block designs)
    fir_delays=[0], optional, array of shape(nb_onsets) or list
                    in case of FIR design, yields the array of delays
                    used in the FIR model
    fir_duration=1., float, duration of the FIR block
                     in general it should eb equal to the tr

    Returns
    -------
    f: formula instance,
       contains the convolved regressors as functions of time
    names: list of strings,
           the condition names, that depend on the hrf model used
           if 'Canonical' then this is identical to the input names
           if 'Canonical With Derivative', then two names are produced for
             input name 'name': 'name' and 'name_derivative'

    fixme
    -----
    normalization of the columns of the design matrix ?
    """
    listc = []
    hnames = []
    typep = paradigm.type

    for nc in np.unique(paradigm.con_id):
        onsets = paradigm.onset[paradigm.con_id == nc]
        nos = np.size(onsets)
        if paradigm.amplitude is not None:
            values = paradigm.amplitude[paradigm.con_id == nc]
        else:
            values = np.ones(nos)
        if nos < 1:
            continue
        if typep == 'event':
            if hrf_model == "Canonical":
                c = utils.define(
                    nc, utils.events(onsets, values, f=hrf.glover))
                listc.append(c)
                hnames.append(nc)
            elif hrf_model == "Canonical With Derivative":
                c1 = utils.define(
                    nc, utils.events(onsets, values, f=hrf.glover))
                c2 = utils.define(nc + "_derivative",
                                   utils.events(onsets, values, f=hrf.dglover))
                listc.append(c1)
                listc.append(c2)
                hnames.append(nc)
                hnames.append(nc + "_derivative")
            elif hrf_model == "FIR":
                for i, ft in enumerate(fir_delays):
                    lnames = nc + "_delay_%d" % i
                    changes = np.hstack((onsets + ft,
                                         onsets + ft + fir_duration))
                    ochanges = np.argsort(changes)
                    lvalues = np.hstack((values, np.zeros(nos)))
                    changes = changes[ochanges]
                    lvalues = lvalues[ochanges]
                    c = utils.define(lnames,
                                     utils.step_function(changes, lvalues))
                    listc.append(c)
                    hnames.append(lnames)
            else:
                raise NotImplementedError('unknown hrf model')
        elif typep == 'block':
            offsets = onsets + paradigm.duration[paradigm.con_id == nc]
            intervals = [[on, off] for (on, off) in zip(onsets, offsets)]
            blks = utils.blocks(intervals, values)
            changes = np.hstack((onsets, offsets))
            cvalues = np.hstack((values, - values))
            if hrf_model == "Canonical":
                c = utils.convolve_functions(blks, hrf.glover(hrf.T),
                                             [0, end_time], 0.001)
                listc.append(c)
                hnames.append(nc)
            elif hrf_model == "Canonical With Derivative":
                c1 = utils.convolve_functions(blks, hrf.glover(hrf.T),
                                              [0, end_time], 0.001)
                c2 = utils.events(changes, cvalues, f=hrf.glover)
                listc.append(c1)
                listc.append(c2)
                hnames.append(nc)
                hnames.append(nc + "_derivative")
            elif hrf_model == "FIR":
                raise NotImplementedError(
                    'block design are not compatible with FIR')
            else:
                raise NotImplementedError('unknown hrf model')

    # create the formula
    p = formula.Formula(listc)

    return p, hnames
Exemplo n.º 3
0
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
Plot of the canonical Glover HRF
"""

import numpy as np

from nipy.modalities.fmri import hrf, utils

import matplotlib.pyplot as plt

# hrf.glover is a symbolic function; get a function of time to work on arrays
hrf_func = utils.lambdify_t(hrf.glover(utils.T))

t = np.linspace(0,25,200)
plt.plot(t, hrf_func(t))
a=plt.gca()
a.set_xlabel(r'$t$')
a.set_ylabel(r'$h_{can}(t)$')
Exemplo n.º 4
0
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
Plot of the canonical Glover HRF
"""

import numpy as np

from nipy.modalities.fmri import hrf, utils

import matplotlib.pyplot as plt

# hrf.glover is a symbolic function; get a function of time to work on arrays
hrf_func = utils.lambdify_t(hrf.glover(utils.T))

t = np.linspace(0, 25, 200)
plt.plot(t, hrf_func(t))
a = plt.gca()
a.set_xlabel(r'$t$')
a.set_ylabel(r'$h_{can}(t)$')
Exemplo n.º 5
0
"""
Plot of the canonical Glover HRF
"""

import numpy as np

from nipy.modalities.fmri import hrf

import pylab


from matplotlib import rc
rc('text', usetex=True)

t = np.linspace(0,25,200)
pylab.plot(t, hrf.glover(t))
a=pylab.gca()
a.set_xlabel(r'$t$')
a.set_ylabel(r'$h_{can}(t)$')


Exemplo n.º 6
0
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
This example uses a different HRF for different event types
"""

import numpy as np

import matplotlib.pyplot as plt

from nipy.modalities.fmri import hrf
from nipy.modalities.fmri.utils import T, lambdify_t


# HRFs as functions of (symbolic) time
glover = hrf.glover(T)
afni = hrf.afni(T)

ta = [0,4,8,12,16]; tb = [2,6,10,14,18]
ba = 1; bb = -2
na = ba * sum([glover.subs(T, T - t) for t in ta])
nb = bb * sum([afni.subs(T, T - t) for t in tb])

nav = lambdify_t(na)
nbv = lambdify_t(nb)

t = np.linspace(0,30,200)
plt.plot(t, nav(t), c='r', label='Face')
plt.plot(t, nbv(t), c='b', label='Object')
plt.plot(t, nbv(t)+nav(t), c='g', label='Combined')
Exemplo n.º 7
0
def make_bold(fname, stim_onset=None):
    """
    Convert raw model output to BOLD signal

    Parameters
    ----------
    fname : str
        File-name (including path if not in working directory) of HDF5 container that was generated 
        by `run_model`. 
    stim_onset : float
        Time (in seconds) of stimulus onset. By default, onset/offset timings of 
        stimuli are stored in the HDF5 container generated by `run_model`. Only override 
        this setting, if you know what you are doing. 

    Returns
    -------
    Nothing : None
        The computed BOLD signal is stored as dataset `BOLD` at the top level of the HDF5 container 
        specified by `fname`. 

    Notes
    -----
    Regional neural voltages are converted to BOLD time-series using the linear hemodynamic response 
    function proposed by Glover [1]_. For details consult the supporting information of our 
    paper [2]_. 


    References
    ----------
    .. [1] Glover G. Deconvolution of Impulse Response in Event-Related BOLD FMRI. 
           NeuroImage 9: 416-429, 1999.

    .. [2] S. Fuertinger, J. C. Zinn, and K. Simonyan. A Neural Population Model Incorporating 
           Dopaminergic Neurotransmission during Complex Voluntary Behaviors. PLoS Computational Biology, 
           10(11), 2014. 
    """
    # Make sure container exists and is valid
    f = checkhdf(fname, peek=True)
    try:
        V = f['V'].value
    except:
        f.close()
        raise ValueError("HDF5 file " + fname +
                         " does not have the required fields!")

    # Compute cycle length based on the sampling rate used to generate the file
    N = f['params']['names'].size
    s_rate = f['params']['s_rate'].value
    n_cycles = f['params']['n_cycles'].value
    len_cycle = f['params']['len_cycle'].value
    cycle_idx = int(np.round(s_rate * len_cycle))

    # Make sure `stim_onset` makes sense
    if stim_onset != None:
        scalarcheck(stim_onset, 'stim_onset', bounds=[0, len_cycle])

    # Get task from file to start sub-sampling procedure
    task = f['params']['task'].value

    # Compute cycle length based on the sampling rate used to generate the file
    N = f['params']['names'].size
    n_cycles = f['params']['n_cycles'].value
    len_cycle = f['params']['len_cycle'].value
    cycle_idx = int(np.round(s_rate * len_cycle))

    # Compute step size and (if not provided by the user) compute stimulus onset time
    dt = 1 / s_rate
    if stim_onset == None:
        stim_onset = f['params']['stimulus'].value

    # Use Glover's Hemodynamic response function as convolution kernel (with default length 32)
    hrft = utils.lambdify_t(hrf.glover(utils.T))
    hrf_kernel = np.hstack((np.zeros(
        (int(s_rate * stim_onset), )), hrft(np.arange(0, 32, dt))))

    # Convolve the de-meaned model time-series with the kernel
    convV = ndimage.filters.convolve1d((V.T - V.mean(axis=1)).T,
                                       hrf_kernel,
                                       mode='constant')

    # Allocate space for BOLD signal
    BOLD = np.zeros((N, n_cycles))

    # Sub-sample convoluted data depending on task to get BOLD signal
    if task == 'speech':

        # Get interval to be considered for boldification
        start = int(np.round(f['params']['speechoff'].value * s_rate))
        stop = start + int(np.round(f['params']['acquisition'].value * s_rate))

    elif task == 'rest':

        # Get interval to be considered for boldification
        start = 0
        stop = int(np.round(f['params']['stimulus'].value * s_rate))

    else:
        raise ValueError("Don't know what to do for task " + task)

    # Compute BOLD signal for all time points
    for j in xrange(n_cycles):
        BOLD[:, j] = convV[:, start:stop].mean(axis=1)
        start += cycle_idx
        stop += cycle_idx

    # Re-scale the the signal
    BOLD = BOLD * 0.02

    # Save it to the file
    try:
        f.create_dataset('BOLD', data=BOLD)
    except:
        f['BOLD'].write_direct(BOLD)
    f.close()