def test_WarpImageMultiTransform_outputs():
    output_map = dict(output_image=dict())
    outputs = WarpImageMultiTransform.output_spec()

    for key, metadata in output_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(outputs.traits()[key], metakey), value
Exemplo n.º 2
0
def test_WarpImageMultiTransform_outputs():
    output_map = dict(output_image=dict(), )
    outputs = WarpImageMultiTransform.output_spec()

    for key, metadata in output_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(outputs.traits()[key], metakey), value
Exemplo n.º 3
0
def test_WarpImageMultiTransform_inputs():
    input_map = dict(args=dict(argstr='%s',
    ),
    dimension=dict(argstr='%d',
    position=1,
    usedefault=True,
    ),
    environ=dict(nohash=True,
    usedefault=True,
    ),
    ignore_exception=dict(nohash=True,
    usedefault=True,
    ),
    input_image=dict(argstr='%s',
    mandatory=True,
    position=2,
    ),
    invert_affine=dict(),
    num_threads=dict(nohash=True,
    usedefault=True,
    ),
    out_postfix=dict(hash_files=False,
    usedefault=True,
    xor=['output_image'],
    ),
    output_image=dict(argstr='%s',
    genfile=True,
    hash_files=False,
    position=3,
    xor=['out_postfix'],
    ),
    reference_image=dict(argstr='-R %s',
    xor=['tightest_box'],
    ),
    reslice_by_header=dict(argstr='--reslice-by-header',
    ),
    terminal_output=dict(mandatory=True,
    nohash=True,
    ),
    tightest_box=dict(argstr='--tightest-bounding-box',
    xor=['reference_image'],
    ),
    transformation_series=dict(argstr='%s',
    mandatory=True,
    position=-1,
    ),
    use_bspline=dict(argstr='--use-BSpline',
    ),
    use_nearest=dict(argstr='--use-NN',
    ),
    )
    inputs = WarpImageMultiTransform.input_spec()

    for key, metadata in input_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(inputs.traits()[key], metakey), value
def test_WarpImageMultiTransform_inputs():
    input_map = dict(args=dict(argstr='%s',
    ),
    dimension=dict(argstr='%d',
    position=1,
    usedefault=True,
    ),
    environ=dict(nohash=True,
    usedefault=True,
    ),
    ignore_exception=dict(nohash=True,
    usedefault=True,
    ),
    input_image=dict(argstr='%s',
    mandatory=True,
    position=2,
    ),
    invert_affine=dict(),
    num_threads=dict(nohash=True,
    usedefault=True,
    ),
    out_postfix=dict(hash_files=False,
    usedefault=True,
    xor=['output_image'],
    ),
    output_image=dict(argstr='%s',
    genfile=True,
    hash_files=False,
    position=3,
    xor=['out_postfix'],
    ),
    reference_image=dict(argstr='-R %s',
    xor=['tightest_box'],
    ),
    reslice_by_header=dict(argstr='--reslice-by-header',
    ),
    terminal_output=dict(nohash=True,
    ),
    tightest_box=dict(argstr='--tightest-bounding-box',
    xor=['reference_image'],
    ),
    transformation_series=dict(argstr='%s',
    mandatory=True,
    position=-1,
    ),
    use_bspline=dict(argstr='--use-BSpline',
    ),
    use_nearest=dict(argstr='--use-NN',
    ),
    )
    inputs = WarpImageMultiTransform.input_spec()

    for key, metadata in input_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(inputs.traits()[key], metakey), value
def test_WarpImageMultiTransform_inputs():
    input_map = dict(
        ignore_exception=dict(nohash=True, usedefault=True),
        num_threads=dict(nohash=True, usedefault=True),
        invert_affine=dict(),
        output_image=dict(hash_files=False, genfile=True, xor=["out_postfix"], position=3, argstr="%s"),
        tightest_box=dict(xor=["reference_image"], argstr="--tightest-bounding-box"),
        out_postfix=dict(xor=["output_image"], hash_files=False, usedefault=True),
        use_nearest=dict(argstr="--use-NN"),
        args=dict(argstr="%s"),
        dimension=dict(position=1, usedefault=True, argstr="%d"),
        terminal_output=dict(mandatory=True, nohash=True),
        environ=dict(nohash=True, usedefault=True),
        reference_image=dict(xor=["tightest_box"], argstr="-R %s"),
        input_image=dict(position=2, mandatory=True, argstr="%s"),
        use_bspline=dict(argstr="--use-Bspline"),
        transformation_series=dict(mandatory=True, argstr="%s"),
        reslice_by_header=dict(argstr="--reslice-by-header"),
    )
    inputs = WarpImageMultiTransform.input_spec()

    for key, metadata in input_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(inputs.traits()[key], metakey), value