Exemplo n.º 1
0
def fsl_name(obj, fname):
    """Create valid fsl name, including file extension for output type.
    """
    ext = Info.output_type_to_ext(obj.inputs.output_type)
    return fname + ext


@pytest.fixture()
def setup_infile(tmpdir):
    ext = Info.output_type_to_ext(Info.output_type())
    tmp_infile = tmpdir.join('foo' + ext)
    tmp_infile.open("w")
    return (tmp_infile.strpath, tmpdir.strpath)


@pytest.mark.skipif(no_fsl(), reason="fsl is not installed")
def test_bet(setup_infile):
    tmp_infile, tp_dir = setup_infile
    better = fsl.BET()
    assert better.cmd == 'bet'

    # Test raising error with mandatory args absent
    with pytest.raises(ValueError):
        better.run()

    # Test generated outfile name
    better.inputs.in_file = tmp_infile
    outfile = fsl_name(better, 'foo_brain')
    outpath = os.path.join(os.getcwd(), outfile)
    realcmd = 'bet %s %s' % (tmp_infile, outpath)
    assert better.cmdline == realcmd
Exemplo n.º 2
0
def create_tbss_2_reg(name="tbss_2_reg"):
    """TBSS nonlinear registration:
    A pipeline that does the same as 'tbss_2_reg -t' script in FSL. '-n' option
    is not supported at the moment.

    Example
    -------

    >>> from nipype.workflows.dmri.fsl import tbss
    >>> tbss2 = create_tbss_2_reg(name="tbss2")
    >>> tbss2.inputs.inputnode.target = fsl.Info.standard_image("FMRIB58_FA_1mm.nii.gz")  # doctest: +SKIP
    >>> tbss2.inputs.inputnode.fa_list = ['s1_FA.nii', 's2_FA.nii', 's3_FA.nii']
    >>> tbss2.inputs.inputnode.mask_list = ['s1_mask.nii', 's2_mask.nii', 's3_mask.nii']

    Inputs::

        inputnode.fa_list
        inputnode.mask_list
        inputnode.target

    Outputs::

        outputnode.field_list

    """

    # Define the inputnode
    inputnode = pe.Node(interface=util.IdentityInterface(fields=["fa_list",
                                                                   "mask_list",
                                                                   "target"]),
                        name="inputnode")

    # Flirt the FA image to the target
    flirt = pe.MapNode(interface=fsl.FLIRT(dof=12),
                    iterfield=['in_file', 'in_weight'],
                    name="flirt")

    fnirt = pe.MapNode(interface=fsl.FNIRT(fieldcoeff_file=True),
                       iterfield=['in_file', 'inmask_file', 'affine_file'],
                       name="fnirt")
    # Fnirt the FA image to the target
    if fsl.no_fsl():
        warn('NO FSL found')
    else:
        config_file = os.path.join(os.environ["FSLDIR"],
                                    "etc/flirtsch/FA_2_FMRIB58_1mm.cnf")
        fnirt.inputs.config_file=config_file

    # Define the registration workflow
    tbss2 = pe.Workflow(name=name)

    # Connect up the registration workflow
    tbss2.connect([
        (inputnode, flirt, [("fa_list", "in_file"),
                         ("target", "reference"),
                         ("mask_list", "in_weight")]),
        (inputnode, fnirt, [("fa_list", "in_file"),
                         ("mask_list", "inmask_file"),
                         ("target", "ref_file")]),
        (flirt, fnirt, [("out_matrix_file", "affine_file")]),
        ])

    # Define the outputnode
    outputnode = pe.Node(interface=util.IdentityInterface(fields=['field_list']),
                         name="outputnode")

    tbss2.connect([
        (fnirt, outputnode, [('fieldcoeff_file', 'field_list')])
        ])
    return tbss2
Exemplo n.º 3
0
def fsl_name(obj, fname):
    """Create valid fsl name, including file extension for output type.
    """
    ext = Info.output_type_to_ext(obj.inputs.output_type)
    return fname + ext


@pytest.fixture()
def setup_infile(tmpdir):
    ext = Info.output_type_to_ext(Info.output_type())
    tmp_infile = tmpdir.join('foo' + ext)
    tmp_infile.open("w")
    return (tmp_infile.strpath, tmpdir.strpath)


@pytest.mark.skipif(no_fsl(), reason="fsl is not installed")
def test_bet(setup_infile):
    tmp_infile, tp_dir = setup_infile
    better = fsl.BET()
    assert better.cmd == 'bet'

    # Test raising error with mandatory args absent
    with pytest.raises(ValueError):
        better.run()

    # Test generated outfile name
    better.inputs.in_file = tmp_infile
    outfile = fsl_name(better, 'foo_brain')
    outpath = os.path.join(os.getcwd(), outfile)
    realcmd = 'bet %s %s' % (tmp_infile, outpath)
    assert better.cmdline == realcmd
Exemplo n.º 4
0
def create_tbss_all(name='tbss_all', estimate_skeleton=True):
    """Create a pipeline that combines create_tbss_* pipelines

    Example
    -------

    >>> from nipype.workflows.dmri.fsl import tbss
    >>> tbss = tbss.create_tbss_all('tbss')
    >>> tbss.inputs.inputnode.skeleton_thresh = 0.2

    Inputs::

        inputnode.fa_list
        inputnode.skeleton_thresh

    Outputs::

        outputnode.meanfa_file
        outputnode.projectedfa_file
        outputnode.skeleton_file
        outputnode.skeleton_mask

    """

    # Define the inputnode
    inputnode = pe.Node(interface=util.IdentityInterface(fields=['fa_list',
                                                                'skeleton_thresh']),
                        name='inputnode')

    tbss1 = create_tbss_1_preproc(name='tbss1')
    tbss2 = create_tbss_2_reg(name='tbss2')
    if fsl.no_fsl():
        warn('NO FSL found')
    else:
        tbss2.inputs.inputnode.target = fsl.Info.standard_image("FMRIB58_FA_1mm.nii.gz")
    tbss3 = create_tbss_3_postreg(name='tbss3', estimate_skeleton=estimate_skeleton)
    tbss4 = create_tbss_4_prestats(name='tbss4')

    tbss_all = pe.Workflow(name=name)
    tbss_all.connect([
                (inputnode, tbss1, [('fa_list', 'inputnode.fa_list')]),
                (inputnode, tbss4, [('skeleton_thresh', 'inputnode.skeleton_thresh')]),

                (tbss1, tbss2, [('outputnode.fa_list', 'inputnode.fa_list'),
                                   ('outputnode.mask_list', 'inputnode.mask_list')]),
                (tbss1, tbss3, [('outputnode.fa_list', 'inputnode.fa_list')]),
                (tbss2, tbss3, [('outputnode.field_list', 'inputnode.field_list')]),
                (tbss3, tbss4, [
                            ('outputnode.groupmask', 'inputnode.groupmask'),
                            ('outputnode.skeleton_file', 'inputnode.skeleton_file'),
                            ('outputnode.meanfa_file', 'inputnode.meanfa_file'),
                            ('outputnode.mergefa_file', 'inputnode.mergefa_file')
                        ])
                ])

    # Define the outputnode
    outputnode = pe.Node(interface=util.IdentityInterface(fields=['groupmask',
                                                                'skeleton_file3',
                                                                'meanfa_file',
                                                                'mergefa_file',
                                                                'projectedfa_file',
                                                                'skeleton_file4',
                                                                'skeleton_mask',
                                                                'distance_map']),
                         name='outputnode')
    outputall_node = pe.Node(interface=util.IdentityInterface(
                                                        fields=['fa_list1',
                                                                'mask_list1',
                                                                'field_list2',
                                                                'groupmask3',
                                                                'skeleton_file3',
                                                                'meanfa_file3',
                                                                'mergefa_file3',
                                                                'projectedfa_file4',
                                                                'skeleton_mask4',
                                                                'distance_map4']),
                         name='outputall_node')

    tbss_all.connect([
                (tbss3, outputnode, [('outputnode.meanfa_file', 'meanfa_file'),
                                    ('outputnode.mergefa_file', 'mergefa_file'),
                                    ('outputnode.groupmask', 'groupmask'),
                                    ('outputnode.skeleton_file', 'skeleton_file3'),
                                    ]),
                (tbss4, outputnode, [('outputnode.projectedfa_file', 'projectedfa_file'),
                                    ('outputnode.skeleton_file', 'skeleton_file4'),
                                    ('outputnode.skeleton_mask', 'skeleton_mask'),
                                    ('outputnode.distance_map', 'distance_map'),
                                    ]),

                (tbss1, outputall_node, [('outputnode.fa_list', 'fa_list1'),
                                    ('outputnode.mask_list', 'mask_list1'),
                                    ]),
                (tbss2, outputall_node, [('outputnode.field_list', 'field_list2'),
                                        ]),
                (tbss3, outputall_node, [
                                    ('outputnode.meanfa_file', 'meanfa_file3'),
                                    ('outputnode.mergefa_file', 'mergefa_file3'),
                                    ('outputnode.groupmask', 'groupmask3'),
                                    ('outputnode.skeleton_file', 'skeleton_file3'),
                                    ]),
                (tbss4, outputall_node, [
                                    ('outputnode.projectedfa_file', 'projectedfa_file4'),
                                    ('outputnode.skeleton_mask', 'skeleton_mask4'),
                                    ('outputnode.distance_map', 'distance_map4'),
                                    ]),
                    ])
    return tbss_all
Exemplo n.º 5
0
def create_tbss_non_FA(name='tbss_non_FA'):
    """
    A pipeline that implement tbss_non_FA in FSL

    Example
    -------

    >>> from nipype.workflows.dmri.fsl import tbss
    >>> tbss_MD = tbss.create_tbss_non_FA()
    >>> tbss_MD.inputs.inputnode.file_list = []
    >>> tbss_MD.inputs.inputnode.field_list = []
    >>> tbss_MD.inputs.inputnode.skeleton_thresh = 0.2
    >>> tbss_MD.inputs.inputnode.groupmask = './xxx'
    >>> tbss_MD.inputs.inputnode.meanfa_file = './xxx'
    >>> tbss_MD.inputs.inputnode.distance_map = []
    >>> tbss_MD.inputs.inputnode.all_FA_file = './xxx'

    Inputs::

        inputnode.file_list
        inputnode.field_list
        inputnode.skeleton_thresh
        inputnode.groupmask
        inputnode.meanfa_file
        inputnode.distance_map
        inputnode.all_FA_file

    Outputs::

        outputnode.projected_nonFA_file

    """

    # Define the inputnode
    inputnode = pe.Node(interface=util.IdentityInterface(fields=['file_list',
                                                                 'field_list',
                                                                 'skeleton_thresh',
                                                                 'groupmask',
                                                                 'meanfa_file',
                                                                 'distance_map',
                                                                 'all_FA_file']),
                        name='inputnode')

    # Apply the warpfield to the non FA image
    applywarp = pe.MapNode(interface=fsl.ApplyWarp(),
                           iterfield=['in_file', 'field_file'],
                           name="applywarp")
    if fsl.no_fsl():
        warn('NO FSL found')
    else:
        applywarp.inputs.ref_file = fsl.Info.standard_image("FMRIB58_FA_1mm.nii.gz")
    # Merge the non FA files into a 4D file
    merge = pe.Node(fsl.Merge(dimension="t"), name="merge")
    #merged_file="all_FA.nii.gz"
    maskgroup = pe.Node(fsl.ImageMaths(op_string="-mas",
                                       suffix="_masked"),
                        name="maskgroup")
    projectfa = pe.Node(fsl.TractSkeleton(project_data=True,
                                        #projected_data = 'test.nii.gz',
                                        use_cingulum_mask=True
                                      ),
                        name="projectfa")

    tbss_non_FA = pe.Workflow(name=name)
    tbss_non_FA.connect([
                    (inputnode, applywarp, [('file_list', 'in_file'),
                                            ('field_list', 'field_file'),
                                            ]),
                    (applywarp, merge, [("out_file", "in_files")]),

                    (merge, maskgroup, [("merged_file", "in_file")]),

                    (inputnode, maskgroup, [('groupmask', 'in_file2')]),

                    (maskgroup, projectfa, [('out_file', 'alt_data_file')]),
                    (inputnode, projectfa, [('skeleton_thresh', 'threshold'),
                                            ("meanfa_file", "in_file"),
                                            ("distance_map", "distance_map"),
                                             ("all_FA_file", 'data_file')
                                            ]),
                ])

    # Define the outputnode
    outputnode = pe.Node(interface=util.IdentityInterface(
                                            fields=['projected_nonFA_file']),
                         name='outputnode')
    tbss_non_FA.connect([
            (projectfa, outputnode, [('projected_data', 'projected_nonFA_file'),
                                    ]),
            ])
    return tbss_non_FA
Exemplo n.º 6
0
def create_tbss_3_postreg(name='tbss_3_postreg', estimate_skeleton=True):
    """Post-registration processing: derive mean_FA and mean_FA_skeleton from
    mean of all subjects in study. Target is assumed to be FMRIB58_FA_1mm.
    A pipeline that does the same as 'tbss_3_postreg -S' script from FSL
    Setting 'estimate_skeleton to False will use precomputed FMRIB58_FA-skeleton_1mm
    skeleton (same as 'tbss_3_postreg -T').

    Example
    -------

    >>> from nipype.workflows.dmri.fsl import tbss
    >>> tbss3 = tbss.create_tbss_3_postreg()
    >>> tbss3.inputs.inputnode.fa_list = ['s1_wrapped_FA.nii', 's2_wrapped_FA.nii', 's3_wrapped_FA.nii']

    Inputs::

        inputnode.field_list
        inputnode.fa_list

    Outputs::

        outputnode.groupmask
        outputnode.skeleton_file
        outputnode.meanfa_file
        outputnode.mergefa_file

    """

    # Create the inputnode
    inputnode = pe.Node(interface=util.IdentityInterface(fields=['field_list',
                                                                'fa_list']),
                        name='inputnode')

    # Apply the warpfield to the masked FA image
    applywarp = pe.MapNode(interface=fsl.ApplyWarp(),
                           iterfield=['in_file', 'field_file'],
                        name="applywarp")
    if fsl.no_fsl():
        warn('NO FSL found')
    else:
        applywarp.inputs.ref_file = fsl.Info.standard_image("FMRIB58_FA_1mm.nii.gz")

    # Merge the FA files into a 4D file
    mergefa = pe.Node(fsl.Merge(dimension="t"),
                    name="mergefa")

    # Get a group mask
    groupmask = pe.Node(fsl.ImageMaths(op_string="-max 0 -Tmin -bin",
                                       out_data_type="char",
                                       suffix="_mask"),
                        name="groupmask")

    maskgroup = pe.Node(fsl.ImageMaths(op_string="-mas",
                                       suffix="_masked"),
                        name="maskgroup")

    tbss3 = pe.Workflow(name=name)
    tbss3.connect([
        (inputnode, applywarp, [("fa_list", "in_file"),
                               ("field_list", "field_file")]),
        (applywarp, mergefa, [("out_file", "in_files")]),
        (mergefa, groupmask, [("merged_file", "in_file")]),
        (mergefa, maskgroup, [("merged_file", "in_file")]),
        (groupmask, maskgroup, [("out_file", "in_file2")]),
        ])

    # Create outputnode
    outputnode = pe.Node(interface=util.IdentityInterface(fields=['groupmask',
                                                                'skeleton_file',
                                                                'meanfa_file',
                                                                'mergefa_file']),
                         name='outputnode')

    if estimate_skeleton:
        # Take the mean over the fourth dimension
        meanfa = pe.Node(fsl.ImageMaths(op_string="-Tmean",
                                         suffix="_mean"),
                          name="meanfa")

        # Use the mean FA volume to generate a tract skeleton
        makeskeleton = pe.Node(fsl.TractSkeleton(skeleton_file=True),
                               name="makeskeleton")
        tbss3.connect([
                       (maskgroup, meanfa, [("out_file", "in_file")]),
                       (meanfa, makeskeleton, [("out_file", "in_file")]),
                       (groupmask, outputnode, [('out_file', 'groupmask')]),
                       (makeskeleton, outputnode, [('skeleton_file', 'skeleton_file')]),
                       (meanfa, outputnode, [('out_file', 'meanfa_file')]),
                       (maskgroup, outputnode, [('out_file', 'mergefa_file')])
                       ])
    else:
        #$FSLDIR/bin/fslmaths $FSLDIR/data/standard/FMRIB58_FA_1mm -mas mean_FA_mask mean_FA
        maskstd = pe.Node(fsl.ImageMaths(op_string="-mas",
                                           suffix="_masked"),
                            name="maskstd")
        maskstd.inputs.in_file = fsl.Info.standard_image("FMRIB58_FA_1mm.nii.gz")

        #$FSLDIR/bin/fslmaths mean_FA -bin mean_FA_mask
        binmaskstd = pe.Node(fsl.ImageMaths(op_string="-bin"),
                            name="binmaskstd")

        #$FSLDIR/bin/fslmaths all_FA -mas mean_FA_mask all_FA
        maskgroup2 = pe.Node(fsl.ImageMaths(op_string="-mas",
                                           suffix="_masked"),
                            name="maskgroup2")

        tbss3.connect([
                        (groupmask, maskstd, [("out_file", "in_file2")]),
                        (maskstd, binmaskstd, [("out_file", "in_file")]),
                        (maskgroup, maskgroup2, [("out_file", "in_file")]),
                        (binmaskstd, maskgroup2, [("out_file", "in_file2")])
        ])

        outputnode.inputs.skeleton_file = fsl.Info.standard_image("FMRIB58_FA-skeleton_1mm.nii.gz")
        tbss3.connect([
                (binmaskstd, outputnode, [('out_file', 'groupmask')]),
                (maskstd, outputnode, [('out_file', 'meanfa_file')]),
                (maskgroup2, outputnode, [('out_file', 'mergefa_file')])
                ])
    return tbss3
Exemplo n.º 7
0
def create_tbss_2_reg(name="tbss_2_reg"):
    """TBSS nonlinear registration:
    A pipeline that does the same as 'tbss_2_reg -t' script in FSL. '-n' option
    is not supported at the moment.

    Example
    -------

    >>> from nipype.workflows.dmri.fsl import tbss
    >>> tbss2 = create_tbss_2_reg(name="tbss2")
    >>> tbss2.inputs.inputnode.target = fsl.Info.standard_image("FMRIB58_FA_1mm.nii.gz")  # doctest: +SKIP
    >>> tbss2.inputs.inputnode.fa_list = ['s1_FA.nii', 's2_FA.nii', 's3_FA.nii']
    >>> tbss2.inputs.inputnode.mask_list = ['s1_mask.nii', 's2_mask.nii', 's3_mask.nii']

    Inputs::

        inputnode.fa_list
        inputnode.mask_list
        inputnode.target

    Outputs::

        outputnode.field_list

    """

    # Define the inputnode
    inputnode = pe.Node(interface=util.IdentityInterface(
        fields=["fa_list", "mask_list", "target"]),
                        name="inputnode")

    # Flirt the FA image to the target
    flirt = pe.MapNode(interface=fsl.FLIRT(dof=12),
                       iterfield=['in_file', 'in_weight'],
                       name="flirt")

    fnirt = pe.MapNode(interface=fsl.FNIRT(fieldcoeff_file=True),
                       iterfield=['in_file', 'inmask_file', 'affine_file'],
                       name="fnirt")
    # Fnirt the FA image to the target
    if fsl.no_fsl():
        warn('NO FSL found')
    else:
        config_file = os.path.join(os.environ["FSLDIR"],
                                   "etc/flirtsch/FA_2_FMRIB58_1mm.cnf")
        fnirt.inputs.config_file = config_file

    # Define the registration workflow
    tbss2 = pe.Workflow(name=name)

    # Connect up the registration workflow
    tbss2.connect([
        (inputnode, flirt, [("fa_list", "in_file"), ("target", "reference"),
                            ("mask_list", "in_weight")]),
        (inputnode, fnirt, [("fa_list", "in_file"),
                            ("mask_list", "inmask_file"),
                            ("target", "ref_file")]),
        (flirt, fnirt, [("out_matrix_file", "affine_file")]),
    ])

    # Define the outputnode
    outputnode = pe.Node(
        interface=util.IdentityInterface(fields=['field_list']),
        name="outputnode")

    tbss2.connect([(fnirt, outputnode, [('fieldcoeff_file', 'field_list')])])
    return tbss2
Exemplo n.º 8
0
def create_tbss_non_FA(name='tbss_non_FA'):
    """
    A pipeline that implement tbss_non_FA in FSL

    Example
    -------

    >>> from nipype.workflows.dmri.fsl import tbss
    >>> tbss_MD = tbss.create_tbss_non_FA()
    >>> tbss_MD.inputs.inputnode.file_list = []
    >>> tbss_MD.inputs.inputnode.field_list = []
    >>> tbss_MD.inputs.inputnode.skeleton_thresh = 0.2
    >>> tbss_MD.inputs.inputnode.groupmask = './xxx'
    >>> tbss_MD.inputs.inputnode.meanfa_file = './xxx'
    >>> tbss_MD.inputs.inputnode.distance_map = []

    Inputs::

        inputnode.file_list
        inputnode.field_list
        inputnode.skeleton_thresh
        inputnode.groupmask
        inputnode.meanfa_file
        inputnode.distance_map

    Outputs::

        outputnode.projected_nonFA_file

    """

    # Define the inputnode
    inputnode = pe.Node(interface=util.IdentityInterface(fields=[
        'file_list', 'field_list', 'skeleton_thresh', 'groupmask',
        'meanfa_file', 'distance_map'
    ]),
                        name='inputnode')

    # Apply the warpfield to the non FA image
    applywarp = pe.MapNode(interface=fsl.ApplyWarp(),
                           iterfield=['in_file', 'field_file'],
                           name="applywarp")
    if fsl.no_fsl():
        warn('NO FSL found')
    else:
        applywarp.inputs.ref_file = fsl.Info.standard_image(
            "FMRIB58_FA_1mm.nii.gz")
    # Merge the non FA files into a 4D file
    merge = pe.Node(fsl.Merge(dimension="t"), name="merge")
    #merged_file="all_FA.nii.gz"
    maskgroup = pe.Node(fsl.ImageMaths(op_string="-mas", suffix="_masked"),
                        name="maskgroup")
    projectfa = pe.Node(
        fsl.TractSkeleton(
            project_data=True,
            #projected_data = 'test.nii.gz',
            use_cingulum_mask=True),
        name="projectfa")

    tbss_non_FA = pe.Workflow(name=name)
    tbss_non_FA.connect([
        (inputnode, applywarp, [
            ('file_list', 'in_file'),
            ('field_list', 'field_file'),
        ]),
        (applywarp, merge, [("out_file", "in_files")]),
        (merge, maskgroup, [("merged_file", "in_file")]),
        (inputnode, maskgroup, [('groupmask', 'in_file2')]),
        (maskgroup, projectfa, [('out_file', 'data_file')]),
        (inputnode, projectfa, [
            ('skeleton_thresh', 'threshold'),
            ("meanfa_file", "in_file"),
            ("distance_map", "distance_map"),
        ]),
    ])

    # Define the outputnode
    outputnode = pe.Node(
        interface=util.IdentityInterface(fields=['projected_nonFA_file']),
        name='outputnode')
    tbss_non_FA.connect([
        (projectfa, outputnode, [
            ('projected_data', 'projected_nonFA_file'),
        ]),
    ])
    return tbss_non_FA
Exemplo n.º 9
0
def create_tbss_all(name='tbss_all', estimate_skeleton=True):
    """Create a pipeline that combines create_tbss_* pipelines

    Example
    -------

    >>> from nipype.workflows.dmri.fsl import tbss
    >>> tbss = tbss.create_tbss_all('tbss')
    >>> tbss.inputs.inputnode.skeleton_thresh = 0.2

    Inputs::

        inputnode.fa_list
        inputnode.skeleton_thresh

    Outputs::

        outputnode.meanfa_file
        outputnode.projectedfa_file
        outputnode.skeleton_file
        outputnode.skeleton_mask

    """

    # Define the inputnode
    inputnode = pe.Node(interface=util.IdentityInterface(
        fields=['fa_list', 'skeleton_thresh']),
                        name='inputnode')

    tbss1 = create_tbss_1_preproc(name='tbss1')
    tbss2 = create_tbss_2_reg(name='tbss2')
    if fsl.no_fsl():
        warn('NO FSL found')
    else:
        tbss2.inputs.inputnode.target = fsl.Info.standard_image(
            "FMRIB58_FA_1mm.nii.gz")
    tbss3 = create_tbss_3_postreg(name='tbss3',
                                  estimate_skeleton=estimate_skeleton)
    tbss4 = create_tbss_4_prestats(name='tbss4')

    tbss_all = pe.Workflow(name=name)
    tbss_all.connect([
        (inputnode, tbss1, [('fa_list', 'inputnode.fa_list')]),
        (inputnode, tbss4, [('skeleton_thresh', 'inputnode.skeleton_thresh')]),
        (tbss1, tbss2, [('outputnode.fa_list', 'inputnode.fa_list'),
                        ('outputnode.mask_list', 'inputnode.mask_list')]),
        (tbss1, tbss3, [('outputnode.fa_list', 'inputnode.fa_list')]),
        (tbss2, tbss3, [('outputnode.field_list', 'inputnode.field_list')]),
        (tbss3, tbss4, [('outputnode.groupmask', 'inputnode.groupmask'),
                        ('outputnode.skeleton_file',
                         'inputnode.skeleton_file'),
                        ('outputnode.meanfa_file', 'inputnode.meanfa_file'),
                        ('outputnode.mergefa_file', 'inputnode.mergefa_file')])
    ])

    # Define the outputnode
    outputnode = pe.Node(interface=util.IdentityInterface(fields=[
        'groupmask', 'skeleton_file3', 'meanfa_file', 'mergefa_file',
        'projectedfa_file', 'skeleton_file4', 'skeleton_mask', 'distance_map'
    ]),
                         name='outputnode')
    outputall_node = pe.Node(interface=util.IdentityInterface(fields=[
        'fa_list1', 'mask_list1', 'field_list2', 'groupmask3',
        'skeleton_file3', 'meanfa_file3', 'mergefa_file3', 'projectedfa_file4',
        'skeleton_mask4', 'distance_map4'
    ]),
                             name='outputall_node')

    tbss_all.connect([
        (tbss3, outputnode, [
            ('outputnode.meanfa_file', 'meanfa_file'),
            ('outputnode.mergefa_file', 'mergefa_file'),
            ('outputnode.groupmask', 'groupmask'),
            ('outputnode.skeleton_file', 'skeleton_file3'),
        ]),
        (tbss4, outputnode, [
            ('outputnode.projectedfa_file', 'projectedfa_file'),
            ('outputnode.skeleton_file', 'skeleton_file4'),
            ('outputnode.skeleton_mask', 'skeleton_mask'),
            ('outputnode.distance_map', 'distance_map'),
        ]),
        (tbss1, outputall_node, [
            ('outputnode.fa_list', 'fa_list1'),
            ('outputnode.mask_list', 'mask_list1'),
        ]),
        (tbss2, outputall_node, [
            ('outputnode.field_list', 'field_list2'),
        ]),
        (tbss3, outputall_node, [
            ('outputnode.meanfa_file', 'meanfa_file3'),
            ('outputnode.mergefa_file', 'mergefa_file3'),
            ('outputnode.groupmask', 'groupmask3'),
            ('outputnode.skeleton_file', 'skeleton_file3'),
        ]),
        (tbss4, outputall_node, [
            ('outputnode.projectedfa_file', 'projectedfa_file4'),
            ('outputnode.skeleton_mask', 'skeleton_mask4'),
            ('outputnode.distance_map', 'distance_map4'),
        ]),
    ])
    return tbss_all
Exemplo n.º 10
0
def create_tbss_3_postreg(name='tbss_3_postreg', estimate_skeleton=True):
    """Post-registration processing: derive mean_FA and mean_FA_skeleton from
    mean of all subjects in study. Target is assumed to be FMRIB58_FA_1mm.
    A pipeline that does the same as 'tbss_3_postreg -S' script from FSL
    Setting 'estimate_skeleton to False will use precomputed FMRIB58_FA-skeleton_1mm
    skeleton (same as 'tbss_3_postreg -T').

    Example
    -------

    >>> from nipype.workflows.dmri.fsl import tbss
    >>> tbss3 = tbss.create_tbss_3_postreg()
    >>> tbss3.inputs.inputnode.fa_list = ['s1_wrapped_FA.nii', 's2_wrapped_FA.nii', 's3_wrapped_FA.nii']

    Inputs::

        inputnode.field_list
        inputnode.fa_list

    Outputs::

        outputnode.groupmask
        outputnode.skeleton_file
        outputnode.meanfa_file
        outputnode.mergefa_file

    """

    # Create the inputnode
    inputnode = pe.Node(
        interface=util.IdentityInterface(fields=['field_list', 'fa_list']),
        name='inputnode')

    # Apply the warpfield to the masked FA image
    applywarp = pe.MapNode(interface=fsl.ApplyWarp(),
                           iterfield=['in_file', 'field_file'],
                           name="applywarp")
    if fsl.no_fsl():
        warn('NO FSL found')
    else:
        applywarp.inputs.ref_file = fsl.Info.standard_image(
            "FMRIB58_FA_1mm.nii.gz")

    # Merge the FA files into a 4D file
    mergefa = pe.Node(fsl.Merge(dimension="t"), name="mergefa")

    # Get a group mask
    groupmask = pe.Node(fsl.ImageMaths(op_string="-max 0 -Tmin -bin",
                                       out_data_type="char",
                                       suffix="_mask"),
                        name="groupmask")

    maskgroup = pe.Node(fsl.ImageMaths(op_string="-mas", suffix="_masked"),
                        name="maskgroup")

    tbss3 = pe.Workflow(name=name)
    tbss3.connect([
        (inputnode, applywarp, [("fa_list", "in_file"),
                                ("field_list", "field_file")]),
        (applywarp, mergefa, [("out_file", "in_files")]),
        (mergefa, groupmask, [("merged_file", "in_file")]),
        (mergefa, maskgroup, [("merged_file", "in_file")]),
        (groupmask, maskgroup, [("out_file", "in_file2")]),
    ])

    # Create outputnode
    outputnode = pe.Node(interface=util.IdentityInterface(
        fields=['groupmask', 'skeleton_file', 'meanfa_file', 'mergefa_file']),
                         name='outputnode')

    if estimate_skeleton:
        # Take the mean over the fourth dimension
        meanfa = pe.Node(fsl.ImageMaths(op_string="-Tmean", suffix="_mean"),
                         name="meanfa")

        # Use the mean FA volume to generate a tract skeleton
        makeskeleton = pe.Node(fsl.TractSkeleton(skeleton_file=True),
                               name="makeskeleton")
        tbss3.connect([
            (maskgroup, meanfa, [("out_file", "in_file")]),
            (meanfa, makeskeleton, [("out_file", "in_file")]),
            (groupmask, outputnode, [('out_file', 'groupmask')]),
            (makeskeleton, outputnode, [('skeleton_file', 'skeleton_file')]),
            (meanfa, outputnode, [('out_file', 'meanfa_file')]),
            (maskgroup, outputnode, [('out_file', 'mergefa_file')])
        ])
    else:
        #$FSLDIR/bin/fslmaths $FSLDIR/data/standard/FMRIB58_FA_1mm -mas mean_FA_mask mean_FA
        maskstd = pe.Node(fsl.ImageMaths(op_string="-mas", suffix="_masked"),
                          name="maskstd")
        maskstd.inputs.in_file = fsl.Info.standard_image(
            "FMRIB58_FA_1mm.nii.gz")

        #$FSLDIR/bin/fslmaths mean_FA -bin mean_FA_mask
        binmaskstd = pe.Node(fsl.ImageMaths(op_string="-bin"),
                             name="binmaskstd")

        #$FSLDIR/bin/fslmaths all_FA -mas mean_FA_mask all_FA
        maskgroup2 = pe.Node(fsl.ImageMaths(op_string="-mas",
                                            suffix="_masked"),
                             name="maskgroup2")

        tbss3.connect([(groupmask, maskstd, [("out_file", "in_file2")]),
                       (maskstd, binmaskstd, [("out_file", "in_file")]),
                       (maskgroup, maskgroup2, [("out_file", "in_file")]),
                       (binmaskstd, maskgroup2, [("out_file", "in_file2")])])

        outputnode.inputs.skeleton_file = fsl.Info.standard_image(
            "FMRIB58_FA-skeleton_1mm.nii.gz")
        tbss3.connect([(binmaskstd, outputnode, [('out_file', 'groupmask')]),
                       (maskstd, outputnode, [('out_file', 'meanfa_file')]),
                       (maskgroup2, outputnode, [('out_file', 'mergefa_file')])
                       ])
    return tbss3