Exemplo n.º 1
0
def test_make_regressor_3():
    """ test the generated regressor
    """
    condition = ([1, 20, 36.5], [2, 2, 2], [1, 1, 1])
    frame_times = np.linspace(0, 138, 70)
    hrf_model = 'fir'
    reg, reg_names = compute_regressor(condition, hrf_model, frame_times,
                                       fir_delays=np.arange(4))
    assert_array_equal(np.sum(reg, 0), np.array([3, 3, 3, 3]))
    assert len(reg_names) == 4
    reg_, reg_names_ = compute_regressor(condition, hrf_model, frame_times,
                                         fir_delays=np.arange(4),
                                         oversampling=50.)
    assert_array_equal(reg, reg_)
Exemplo n.º 2
0
def test_design_warnings():
    """
    test that warnings are correctly raised upon weird design specification
    """
    condition = ([-25, 20, 36.5], [0, 0, 0], [1, 1, 1])
    frame_times = np.linspace(0, 69, 70)
    hrf_model = 'spm'
    with warnings.catch_warnings(record=True):
        warnings.simplefilter("always")
        with pytest.warns(UserWarning):
            compute_regressor(condition, hrf_model, frame_times)
    condition = ([-25, -25, 36.5], [0, 0, 0], [1, 1, 1])
    with warnings.catch_warnings(record=True):
        warnings.simplefilter("always")
        with pytest.warns(UserWarning):
            compute_regressor(condition, hrf_model, frame_times)
Exemplo n.º 3
0
Arquivo: neuro.py Projeto: jooh/sana
def convolveevents(evtable,
                   epi,
                   *,
                   hrf_model='spm',
                   target_col='stim_id',
                   regressors=None,
                   **kwarg):
    """return a convolved design matrix for the design in pd.DataFrame-like evtable,
    using the meta data in nibabel.Nifti1Image-like epi to deduce tr and nvol."""
    if not "amplitude" in evtable:
        LOGGER.info("no amplitude field in evtable, creating")
        evtable = evtable.assign(amplitude=1)
    if regressors is None:
        LOGGER.info("no regressors input, using unique entries in target_col")
        regressors = evtable[target_col].unique()
        regressors = np.sort(regressors[np.isnan(regressors) == False])
    tr = epi.header.get_zooms()[-1]
    nvol = epi.shape[-1]
    frametimes = np.arange(0, nvol * tr, tr)
    convolved = []
    for thisreg in regressors:
        regtable = evtable.loc[evtable[target_col] == thisreg]
        vals = regtable[['onset', 'duration', 'amplitude']].values.T
        convolved.append(
            hrf.compute_regressor(vals, hrf_model, frametimes, **kwarg)[0])
    return np.concatenate(convolved, axis=1)
Exemplo n.º 4
0
    def get_bold_signal(self, exp, amplitudes, hrf_model, fmri_gain=1):
        '''To get the response vector'''
        # # To get the stimuli signal within the frame_times framework
        # stim = np.zeros_like(self.frame_times)  # Contains amplitude of the stimulus in the frame_times space
        # for k, idx in idx_stimuli_within_frames:
        #     stim[idx] = amplitudes[k]
        # Build experimental condition vector
        exp_condition = np.array((exp.stimulus_onsets, exp.stimulus_durations, amplitudes[:exp.n_stimuli]))\
            .reshape(3, exp.n_stimuli)

        signal, name = hemodynamic_models.compute_regressor(exp_condition,
                                                            hrf_model,
                                                            self.frame_times,
                                                            con_id='main',
                                                            oversampling=1)

        # Amplify the signal
        signal = fmri_gain * signal

        # Take the signal only at the scan values
        scan_signal = np.zeros_like(self.scan_times)
        for k, idx in enumerate(self.idx_scans_within_frames):
            scan_signal[k] = signal[idx, 0]

        return signal, scan_signal, name
Exemplo n.º 5
0
def test_make_regressor_1():
    """ test the generated regressor
    """
    condition = ([1, 20, 36.5], [2, 2, 2], [1, 1, 1])
    frame_times = np.linspace(0, 69, 70)
    hrf_model = "spm"
    reg, reg_names = compute_regressor(condition, hrf_model, frame_times)
    assert_almost_equal(reg.sum(), 6, 1)
    assert_equal(reg_names[0], "cond")
Exemplo n.º 6
0
def test_make_regressor_2():
    """ test the generated regressor
    """
    condition = ([1, 20, 36.5], [0, 0, 0], [1, 1, 1])
    frame_times = np.linspace(0, 69, 70)
    hrf_model = 'spm'
    reg, reg_names = compute_regressor(condition, hrf_model, frame_times)
    assert_almost_equal(reg.sum() * 50, 3, 1)
    assert_equal(reg_names[0], 'cond')
Exemplo n.º 7
0
def test_make_regressor_2():
    """ test the generated regressor
    """
    condition = ([1, 20, 36.5], [0, 0, 0], [1, 1, 1])
    frame_times = np.linspace(0, 69, 70)
    hrf_model = 'spm'
    reg, reg_names = compute_regressor(condition, hrf_model, frame_times)
    assert_almost_equal(reg.sum() * 50, 3, 1)
    assert_equal(reg_names[0], 'cond')
Exemplo n.º 8
0
def test_make_regressor_3():
    """ test the generated regressor
    """
    condition = ([1, 20, 36.5], [0, 0, 0], [1, 1, 1])
    frame_times = np.linspace(0, 138, 70)
    hrf_model = "fir"
    reg, reg_names = compute_regressor(condition, hrf_model, frame_times, fir_delays=np.arange(4))
    assert_array_equal(np.unique(reg), np.array([0, 1]))
    assert_array_equal(np.sum(reg, 0), np.array([3, 3, 3, 3]))
    assert_equal(len(reg_names), 4)
Exemplo n.º 9
0
def test_make_regressor_3():
    """ test the generated regressor
    """
    condition = ([1, 20, 36.5], [0, 0, 0], [1, 1, 1])
    frame_times = np.linspace(0, 138, 70)
    hrf_model = 'fir'
    reg, reg_names = compute_regressor(condition,
                                       hrf_model,
                                       frame_times,
                                       fir_delays=np.arange(4))
    assert_array_equal(np.unique(reg), np.array([0, 1]))
    assert_array_equal(np.sum(reg, 0), np.array([3, 3, 3, 3]))
    assert_equal(len(reg_names), 4)
Exemplo n.º 10
0
def process_raw_features(run, tr, nscans):
    # compute convolution of raw_features with hrf kernel
    df = pd.read_csv(run)
    result = []
    count = 0
    raw_features_columns = [
        col for col in df.columns if col not in ['offsets', 'duration']
    ]
    for col in raw_features_columns:
        conditions = np.vstack((df.offsets, df.duration, df[col]))
        tmp = compute_regressor(exp_condition=conditions,
                                hrf_model='spm',
                                frame_times=np.arange(0.0, nscans * tr, tr),
                                oversampling=10)
        result.append(pd.DataFrame(tmp[0], columns=[col]))
        count += 1
    return pd.concat(result, axis=1)
Exemplo n.º 11
0
def onset2reg(df, nscans, tr):
    """ df : pandas dataframe with columnes onset and amplitude, and, optionnaly, duration
        nscans: number of scans
        tr : sampling period of scanning"""
    n_events = len(df)
    onsets = df.onset
    amplitudes = df.amplitude
    if 'duration' in df.columns:  # optionaly, use "duration"
        durations = df.duration
    else:
        durations = np.zeros(n_events)

    conditions = np.vstack((onsets, durations, amplitudes))

    x = compute_regressor(exp_condition=conditions,
                          hrf_model="spm",
                          frame_times=np.arange(0.0, nscans * tr, tr),
                          oversampling=10)

    return pd.DataFrame(x[0], columns=['hrf'])
Exemplo n.º 12
0
    def __init__(self, name, frame_times, onset, *, duration=None, 
                 modulation=None):
        '''
        Args:
            name (str): Name of the regressor.
            frame_times (np.ndarray of shape (n_frames,)):
                The timing of acquisition of the scans in seconds.
            onset (array-like): 
                Specifies the start time of each event in seconds.
            duration (array-like, optional): 
                Duration of each event in seconds. Defaults duration is set to 0 
                (impulse function).
            modulation (array-like, optional): 
                Parametric modulation of event amplitude. Before convolution 
                regressor is demeaned. 
        '''
        if not isinstance(frame_times, np.ndarray) or frame_times.ndim != 1:
            msg = 'frame_times should be np.ndarray of shape (n_frames, )'
            raise TypeError(msg)

        self._name = name
        self._frame_times = frame_times
            
        n_events = len(onset)
        
        if duration is None:
            duration = np.zeros(n_events)
            
        if modulation is None or (len(modulation) > 1 
                                  and np.all(np.array(modulation) == modulation[0])):
            modulation = np.ones(n_events)
        elif len(modulation) > 1:
            modulation = np.array(modulation)
            modulation = modulation - np.mean(modulation)
        
        self._values, _ = hemodynamic_models.compute_regressor(
            exp_condition=np.vstack((onset, duration, modulation)),
            hrf_model='spm',
            frame_times=frame_times
        )
Exemplo n.º 13
0
def convolve(signal, t_r=2, oversampling=50, hrf_model='spm'):
    '''Convolve signal with hemodynamic response function.
    
    Performs signal convolution with requested hrf model. This function wraps around nistats 
    compute_regressor function usually used for creating task-based regressors. The trick is to 
    define neural regressor as a sequence of equally spaced (with the gap of 1TR) and modulated
    'task events'. Event amplitude modulation corresponds to neural signal amplitude at a given 
    timepoint.
    
    Args:
        signal (iterable):
            Neural signal.
        t_r (float):
            Repetition time in seconds.
        oversampling (int, optional):
            Convolution upsampling rate.
        hrf_model (str, optional):
            Hemodynamic response function type. See the documentation of compute regressor function 
            from nistats.hemodynamic_models for more details.
            
    Returns:
        Convolved neural signal in BOLD space.
    '''
    n_volumes = len(signal)
    frame_times = np.arange(0, n_volumes * t_r, t_r)
    onsets = np.zeros((3, n_volumes))
    for vol, amplitude in enumerate(signal):
        onsets[:, vol] = (vol * t_r, 0, amplitude)

    signal_bold = hemodynamic_models.compute_regressor(
        onsets,
        hrf_model=hrf_model,                              
        frame_times=frame_times,
        oversampling=oversampling,     
        fir_delays=None)[0].ravel()

    return signal_bold
 def compute_regressor(self, dataframe, offset_type, duration_type,
                       run_index):
     """ Compute the convolution with an hrf for each column of the dataframe.
     Arguments:
         - dataframes: pd.DataFrame
         - offset_type: str
         - duration_type: str
         - run_index: str
     Returns:
         - matrix: np.array
     """
     regressors = []
     dataframe = dataframe.dropna(axis=0)
     representations = [col for col in dataframe.columns]
     offsets = fetch_offsets(offset_type, run_index, self.offset_path,
                             self.language)
     duration = fetch_duration(duration_type,
                               run_index,
                               self.duration_path,
                               default_size=len(dataframe))
     offsets += self.temporal_shifting  # shift offsets by 'temporal_shifting' seconds
     for col in representations:
         conditions = np.vstack((offsets, duration, dataframe[col]))
         signal, name = compute_regressor(
             exp_condition=conditions,
             hrf_model=self.hrf,
             frame_times=np.arange(0.0, self.nscans[run_index] * self.tr,
                                   self.tr),
             oversampling=self.oversampling)
         col = str(col)
         regressors.append(
             pd.DataFrame(signal,
                          columns=[col] +
                          [col + '_' + item for item in name[1:]]))
     matrix = pd.concat(regressors, axis=1).values
     return matrix
stim = np.zeros_like(frame_times)
for k in range(n_events):
    stim[(frame_times > onset[k]) *
         (frame_times <= onset[k] + duration[k])] = amplitude[k]
exp_condition = np.array((onset, duration, amplitude)).reshape(3, n_events)
hrf_models = [None, 'spm', 'glover + derivative']

#########################################################################
# sample the hrf
fig = plt.figure(figsize=(9, 4))
for i, hrf_model in enumerate(hrf_models):
    signal, name = hemodynamic_models.compute_regressor(exp_condition,
                                                        hrf_model,
                                                        frame_times,
                                                        con_id='main',
                                                        oversampling=16,
                                                        fir_delays=np.array(
                                                            [1., 2.]))

    plt.subplot(1, 3, i + 1)
    # plt.fill(frame_times, stim, 'k', alpha=.5, label='stimulus')
    for j in range(signal.shape[1]):
        plt.plot(frame_times, signal.T[j], label=name[j])
    plt.xlabel('time (s)')
    #plt.legend(loc=1)
    plt.title(hrf_model)

plt.subplots_adjust(bottom=.12)
plt.savefig('output/figures/example_hrf.png', bbox_inches='tight')
Exemplo n.º 16
0
# ----------------------------------
#
# Let's quickly plot this file:
frame_times = np.linspace(0, 30, 61)
onset, amplitude, duration = 0., 1., 1.
stim = np.zeros_like(frame_times)
stim[(frame_times > onset) * (frame_times <= onset + duration)] = amplitude
exp_condition = np.array((onset, duration, amplitude)).reshape(3, 1)
hrf_models = [None, 'glover + derivative', 'glover + derivative + dispersion']

#########################################################################
# sample the hrf
fig = plt.figure(figsize=(9, 4))
for i, hrf_model in enumerate(hrf_models):
    signal, name = hemodynamic_models.compute_regressor(exp_condition,
                                                        hrf_model,
                                                        frame_times,
                                                        con_id='main',
                                                        oversampling=16)

    plt.subplot(1, 3, i + 1)
    plt.fill(frame_times, stim, 'k', alpha=.5, label='stimulus')
    for j in range(signal.shape[1]):
        plt.plot(frame_times, signal.T[j], label=name[j])
    plt.xlabel('time (s)')
    plt.legend(loc=1)
    plt.title(hrf_model)

plt.subplots_adjust(bottom=.12)
plt.show()
Exemplo n.º 17
0
import matplotlib.pyplot as plt
from nistats import hemodynamic_models


# parameters
frame_times = np.linspace(0, 30, 61)
onset, amplitude, duration = 0., 1., 1.
stim = np.zeros_like(frame_times)
stim[(frame_times > onset) * (frame_times <= onset + duration)] = amplitude
exp_condition = np.array((onset, duration, amplitude)).reshape(3, 1)
hrf_models = ['glover + derivative', 'glover + derivative + dispersion']


fig = plt.figure(figsize=(9, 4))
# sample the hrf
for i, hrf_model in enumerate(hrf_models):
    signal, name = hemodynamic_models.compute_regressor(
        exp_condition, hrf_model, frame_times, con_id='main',
        oversampling=16)

    plt.subplot(1, 2, i + 1)
    plt.fill(frame_times, stim, 'k', alpha=.5, label='stimulus')
    for j in range(signal.shape[1]):
        plt.plot(frame_times, signal.T[j], label=name[j])
    plt.xlabel('time (s)')
    plt.legend(loc=1)
    plt.title(hrf_model)

plt.subplots_adjust(bottom=.12)
fig.show()