Exemplo n.º 1
0
def plot_d_m(dm, save=False, filename='dm.png', dir_name='.', verbose=False):
    """Plot designa matrix."""
    plot_design_matrix(dm)
    if save:
        filename = os.path.join(dir_name, filename)
        if verbose:
            print("Saving plot under '{0}'".format(filename))
        plt.savefig(filename)
    else:
        plt.show()
def compute_group_z_map(second_level_input, n_sub, output_pathway):
    # Model the effect of conditions (sample 1 vs sample 2).
    condition_effect = np.hstack(([1] * n_sub, [- 1] * n_sub))

    # Model the subject effect:
    # each subject is observed in sample 1 and sample 2.
    subject_effect = np.vstack((np.eye(n_sub), np.eye(n_sub)))
    subjects = ['S%02d' % i for i in range(1, n_sub + 1)]

    # We then assemble those in a design matrix and...
    design_matrix = pd.DataFrame(
        np.hstack((condition_effect[:, np.newaxis], subject_effect)),
        columns=['Story vs. Math'] + subjects)

    # ... plot the design_matrix.
    plot_design_matrix(design_matrix, output_file=
                       os.path.join(output_pathway,
                                    'design_matrix_story_math.png'))

    # Specify the analysis model and fit it
    second_level_model = SecondLevelModel().fit(second_level_input,
                                                design_matrix=design_matrix)

    # Estimate the contrast
    z_map = second_level_model.compute_contrast('Story vs. Math',
                                                output_type='z_score')

    # Report of the GLM
    report = make_glm_report(second_level_model,
                             contrasts='Story vs. Math',
                             title='Group-Level HCP900 Story vs.Math Report',
                             cluster_threshold=5,
                             height_control='fdr',
                             min_distance=8.,
                             plot_type='glass',
    )

    report.save_as_html(os.path.join(output_pathway, 'report.html'))

    # Save contrast nifti-file
    z_map.to_filename(os.path.join(output_pathway,
                                   'group_hcplang900_story_math.nii.gz'))

    # Plot contrast
    threshold = 3.1  # correponds to  p < .001, uncorrected
    display = plotting.plot_glass_brain(z_map, threshold=threshold,
                                        colorbar=True,
                                        plot_abs=False,
                                        title='Story vs. Math (unc p<0.001)',
                                        output_file=os.path.join(
                                        output_pathway,
                                        'group_hcplang900_story_math'))

    return z_map
Exemplo n.º 3
0
def test_show_design_matrix():
    # test that the show code indeed (formally) runs
    frame_times = np.linspace(0, 127 * 1., 128)
    dmtx = make_first_level_design_matrix(
        frame_times, drift_model='polynomial', drift_order=3)
    ax = plot_design_matrix(dmtx)
    assert (ax is not None)
    with InTemporaryDirectory():
        ax = plot_design_matrix(dmtx, output_file='dmtx.png')
        assert os.path.exists('dmtx.png')
        assert (ax is None)
        plot_design_matrix(dmtx, output_file='dmtx.pdf')
        assert os.path.exists('dmtx.pdf')
Exemplo n.º 4
0
def test_show_design_matrix():
    # test that the show code indeed (formally) runs
    frame_times = np.linspace(0, 127 * 1., 128)
    DM = make_design_matrix(
        frame_times, drift_model='polynomial', drift_order=3)
    ax = plot_design_matrix(DM)
    assert (ax is not None)
Exemplo n.º 5
0
def _dmtx_to_svg_url(design_matrices):
    """ Accepts a FirstLevelModel or SecondLevelModel object
    with fitted design matrices & generates SVG Image URL,
    which can be inserted into an HTML template.

    Parameters
    ----------
    design_matrices: List[pd.Dataframe]
        Design matrices computed in the model.

    Returns
    -------
    svg_url_design_matrices: String
        SVG Image URL for the plotted design matrices,
    """
    html_design_matrices = []
    dmtx_template_path = os.path.join(HTML_TEMPLATE_ROOT_PATH,
                                      'design_matrix_template.html')
    with open(dmtx_template_path) as html_template_obj:
        dmtx_template_text = html_template_obj.read()

    for dmtx_count, design_matrix in enumerate(design_matrices, start=1):
        dmtx_text_ = string.Template(dmtx_template_text)
        dmtx_plot = plot_design_matrix(design_matrix)
        dmtx_title = 'Session {}'.format(dmtx_count)
        plt.title(dmtx_title, y=0.987)
        dmtx_plot = _resize_plot_inches(dmtx_plot, height_change=.3)
        url_design_matrix_svg = plot_to_svg(dmtx_plot)
        # prevents sphinx-gallery & jupyter from scraping & inserting plots
        plt.close()
        dmtx_text_ = dmtx_text_.safe_substitute({
            'design_matrix': url_design_matrix_svg,
            'dmtx_title': dmtx_title,
        })
        html_design_matrices.append(dmtx_text_)
    svg_url_design_matrices = ''.join(html_design_matrices)
    return svg_url_design_matrices
Exemplo n.º 6
0
#############################################################################
# Analyse data
# ------------
#
# First create an adequate design matrix with three columns: 'age',
# 'sex', 'intercept'.
import pandas as pd
import numpy as np
intercept = np.ones(n_subjects)
design_matrix = pd.DataFrame(np.vstack((age, sex, intercept)).T,
                             columns=['age', 'sex', 'intercept'])

#############################################################################
# Plot the design matrix
from nistats.reporting import plot_design_matrix
ax = plot_design_matrix(design_matrix)
ax.set_title('Second level design matrix', fontsize=12)
ax.set_ylabel('maps')

##########################################################################
# Specify and fit the second-level model when loading the data, we
# smooth a little bit to improve statistical behavior

from nistats.second_level_model import SecondLevelModel
second_level_model = SecondLevelModel(smoothing_fwhm=2.0, mask=mask_img)
second_level_model.fit(gray_matter_map_filenames,
                       design_matrix=design_matrix)

##########################################################################
# Estimate the contrast is very simple. We can just provide the column
# name of the design matrix.
#########################################################################
# Then we sample the design matrix
X2 = make_first_level_design_matrix(frame_times, events, drift_model='polynomial',
                                    drift_order=3, hrf_model=hrf_model)

#########################################################################
# Finally we compute a FIR model
events = pd.DataFrame({'trial_type': conditions, 'onset': onsets,
                         'duration': duration})
hrf_model = 'FIR'
X3 = make_first_level_design_matrix(frame_times, events, hrf_model='fir',
                                    drift_model='polynomial', drift_order=3,
                                    fir_delays=np.arange(1, 6))

#########################################################################
# Here the three designs side by side
from nistats.reporting import plot_design_matrix
fig, (ax1, ax2, ax3) = plt.subplots(figsize=(10, 6), nrows=1, ncols=3)
plot_design_matrix(X1, ax=ax1)
ax1.set_title('Event-related design matrix', fontsize=12)
plot_design_matrix(X2, ax=ax2)
ax2.set_title('Block design matrix', fontsize=12)
plot_design_matrix(X3, ax=ax3)
ax3.set_title('FIR design matrix', fontsize=12)

#########################################################################
# Improve the layout and show the result
plt.subplots_adjust(left=0.08, top=0.9, bottom=0.21, right=0.96, wspace=0.3)
plt.show()
############################################################################
# model the subject effect: each subject is observed in sample 1 and sample 2
subject_effect = np.vstack((np.eye(n_subjects), np.eye(n_subjects)))
subjects = ['S%02d' % i for i in range(1, n_subjects + 1)]

############################################################################
# Assemble those in a design matrix
design_matrix = pd.DataFrame(np.hstack(
    (condition_effect[:, np.newaxis], subject_effect)),
                             columns=['vertical vs horizontal'] + subjects)

############################################################################
# plot the design_matrix
from nistats.reporting import plot_design_matrix

plot_design_matrix(design_matrix)

############################################################################
# formally specify the analysis model and fit it
from nistats.second_level_model import SecondLevelModel

second_level_model = SecondLevelModel().fit(second_level_input,
                                            design_matrix=design_matrix)

##########################################################################
# Estimating the contrast is very simple. We can just provide the column
# name of the design matrix.
z_map = second_level_model.compute_contrast('vertical vs horizontal',
                                            output_type='z_score')

###########################################################################
Exemplo n.º 9
0
def denoise(img_file, tsv_file, out_path, col_names=False, hp_filter=False, lp_filter=False, out_figure_path=False):
    nii_ext = '.nii.gz'
    FD_thr = [.5]
    sc_range = np.arange(-1, 3)
    constant = 'constant'

    # read in files
    img = load_niimg(img_file)
    # get file info
    img_name = os.path.basename(img.get_filename())
    file_base = img_name[0:img_name.find('.')]
    save_img_file = pjoin(out_path, file_base + \
                          '_NR' + nii_ext)
    data = img.get_data()
    df_orig = pandas.read_csv(tsv_file, '\t', na_values='n/a')
    df = copy.deepcopy(df_orig)
    Ntrs = df.as_matrix().shape[0]
    print('# of TRs: ' + str(Ntrs))
    assert (Ntrs == data.shape[len(data.shape) - 1])

    # select columns to use as nuisance regressors
    if col_names:
        df = df[col_names]
        str_append = '  [SELECTED regressors in CSV]'
    else:
        col_names = df.columns.tolist()
        str_append = '  [ALL regressors in CSV]'

    # fill in missing nuisance values with mean for that variable
    for col in df.columns:
        if sum(df[col].isnull()) > 0:
            print('Filling in ' + str(sum(df[col].isnull())) + ' NaN value for ' + col)
            df[col] = df[col].fillna(np.mean(df[col]))
    print('# of Confound Regressors: ' + str(len(df.columns)) + str_append)

    # implement HP filter in regression
    TR = img.header.get_zooms()[-1]
    frame_times = np.arange(Ntrs) * TR
    if hp_filter:
        hp_filter = float(hp_filter)
        assert (hp_filter > 0)
        period_cutoff = 1. / hp_filter
        df = make_first_level_design_matrix(frame_times, period_cut=period_cutoff, add_regs=df.as_matrix(),
                                add_reg_names=df.columns.tolist())
        # fn adds intercept into dm

        hp_cols = [col for col in df.columns if 'drift' in col]
        print('# of High-pass Filter Regressors: ' + str(len(hp_cols)))
    else:
        # add in intercept column into data frame
        df[constant] = 1
        print('No High-pass Filter Applied')

    dm = df.as_matrix()

    # prep data
    data = np.reshape(data, (-1, Ntrs))
    data_mean = np.mean(data, axis=1)
    Nvox = len(data_mean)

    # setup and run regression
    model = regression.OLSModel(dm)
    results = model.fit(data.T)
    if not hp_filter:
        results_orig_resid = copy.deepcopy(results.resid)  # save for rsquared computation

    # apply low-pass filter
    if lp_filter:
        # input to butterworth fn is time x voxels
        low_pass = float(lp_filter)
        Fs = 1. / TR
        if low_pass >= Fs / 2:
            raise ValueError('Low pass filter cutoff if too close to the Nyquist frequency (%s)' % (Fs / 2))

        temp_img_file = pjoin(out_path, file_base + \
                              '_temp' + nii_ext)
        temp_img = nb.Nifti1Image(np.reshape(results.resid.T + np.reshape(data_mean, (Nvox, 1)), img.shape).astype('float32'),
                                  img.affine, header=img.header)
        temp_img.to_filename(temp_img_file)
        results.resid = butterworth(results.resid, sampling_rate=Fs, low_pass=low_pass, high_pass=None)
        print('Low-pass Filter Applied: < ' + str(low_pass) + ' Hz')

    # add mean back into data
    clean_data = results.resid.T + np.reshape(data_mean, (Nvox, 1))  # add mean back into residuals

    # save out new data file
    print('Saving output file...')
    clean_data = np.reshape(clean_data, img.shape).astype('float32')
    new_img = nb.Nifti1Image(clean_data, img.affine, header=img.header)
    new_img.to_filename(save_img_file)

    ######### generate Rsquared map for confounds only
    if hp_filter:
        # first remove low-frequency information from data
        hp_cols.append(constant)
        model_first = regression.OLSModel(df[hp_cols].as_matrix())
        results_first = model_first.fit(data.T)
        results_first_resid = copy.deepcopy(results_first.resid)
        del results_first, model_first

        # compute sst - borrowed from matlab
        sst = np.square(np.linalg.norm(results_first_resid -
                                       np.mean(results_first_resid, axis=0), axis=0))

        # now regress out 'true' confounds to estimate their Rsquared
        nr_cols = [col for col in df.columns if 'drift' not in col]
        model_second = regression.OLSModel(df[nr_cols].as_matrix())
        results_second = model_second.fit(results_first_resid)

        # compute sse - borrowed from matlab
        sse = np.square(np.linalg.norm(results_second.resid, axis=0))

        del results_second, model_second, results_first_resid

    elif not hp_filter:
        # compute sst - borrowed from matlab
        sst = np.square(np.linalg.norm(data.T -
                                       np.mean(data.T, axis=0), axis=0))

        # compute sse - borrowed from matlab
        sse = np.square(np.linalg.norm(results_orig_resid, axis=0))

        del results_orig_resid

    # compute rsquared of nuisance regressors
    zero_idx = scipy.logical_and(sst == 0, sse == 0)
    sse[zero_idx] = 1
    sst[zero_idx] = 1  # would be NaNs - become rsquared = 0
    rsquare = 1 - np.true_divide(sse, sst)
    rsquare[np.isnan(rsquare)] = 0

    ######### Visualizing DM & outputs
    fontsize = 12
    fontsize_title = 14
    def_img_size = 8

    if not out_figure_path:
        out_figure_path = save_img_file[0:save_img_file.find('.')] + '_figures'

    if not os.path.isdir(out_figure_path):
        os.mkdir(out_figure_path)
    png_append = '_' + img_name[0:img_name.find('.')] + '.png'
    print('Output directory: ' + out_figure_path)

    # DM corr matrix
    cm = df[df.columns[0:-1]].corr()
    curr_sz = copy.deepcopy(def_img_size)
    if cm.shape[0] > def_img_size:
        curr_sz = curr_sz + ((cm.shape[0] - curr_sz) * .3)
    mtx_scale = curr_sz * 100

    mask = np.zeros_like(cm, dtype=np.bool)
    mask[np.triu_indices_from(mask)] = True

    fig, ax = plt.subplots(figsize=(curr_sz, curr_sz))
    cmap = sns.diverging_palette(220, 10, as_cmap=True)
    sns.heatmap(cm, mask=mask, cmap=cmap, center=0, vmax=cm[cm < 1].max().max(), vmin=cm[cm < 1].min().min(),
                square=True, linewidths=.5, cbar_kws={"shrink": .6})
    ax.set_xticklabels(ax.get_xticklabels(), rotation=60, ha='right', fontsize=fontsize)
    ax.set_yticklabels(cm.columns.tolist(), rotation=-30, va='bottom', fontsize=fontsize)
    ax.set_title('Nuisance Corr. Matrix', fontsize=fontsize_title)
    plt.tight_layout()
    file_corr_matrix = 'Corr_matrix_regressors' + png_append
    fig.savefig(pjoin(out_figure_path, file_corr_matrix))
    plt.close(fig)
    del fig, ax

    # DM of Nuisance Regressors (all)
    tr_label = 'TR (Volume #)'
    fig, ax = plt.subplots(figsize=(curr_sz - 4.1, def_img_size))
    x_scale_html = ((curr_sz - 4.1) / def_img_size) * 890
    reporting.plot_design_matrix(df, ax=ax)
    ax.set_title('Nuisance Design Matrix', fontsize=fontsize_title)
    ax.set_xticklabels(ax.get_xticklabels(), rotation=60, ha='right', fontsize=fontsize)
    ax.set_yticklabels(ax.get_yticklabels(), fontsize=fontsize)
    ax.set_ylabel(tr_label, fontsize=fontsize)
    plt.tight_layout()
    file_design_matrix = 'Design_matrix' + png_append
    fig.savefig(pjoin(out_figure_path, file_design_matrix))
    plt.close(fig)
    del fig, ax

    # FD timeseries plot
    FD = 'FD'
    poss_names = ['FramewiseDisplacement', FD, 'framewisedisplacement', 'fd']
    fd_idx = [df_orig.columns.__contains__(i) for i in poss_names]
    if np.sum(fd_idx) > 0:
        FD_name = poss_names[fd_idx == True]
        if sum(df_orig[FD_name].isnull()) > 0:
            df_orig[FD_name] = df_orig[FD_name].fillna(np.mean(df_orig[FD_name]))
        y = df_orig[FD_name].as_matrix()
        Nremove = []
        sc_idx = []
        for thr_idx, thr in enumerate(FD_thr):
            idx = y >= thr
            sc_idx.append(copy.deepcopy(idx))
            for iidx in np.where(idx)[0]:
                for buffer in sc_range:
                    curr_idx = iidx + buffer
                    if curr_idx >= 0 and curr_idx <= len(idx):
                        sc_idx[thr_idx][curr_idx] = True
            Nremove.append(np.sum(sc_idx[thr_idx]))

        Nplots = len(FD_thr)
        sns.set(font_scale=1.5)
        sns.set_style('ticks')
        fig, axes = plt.subplots(Nplots, 1, figsize=(def_img_size * 1.5, def_img_size / 2), squeeze=False)
        sns.despine()
        bound = .4
        fd_mean = np.mean(y)
        for curr in np.arange(0, Nplots):
            axes[curr, 0].plot(y)
            axes[curr, 0].plot((-bound, Ntrs + bound), FD_thr[curr] * np.ones((1, 2))[0], '--', color='black')
            axes[curr, 0].scatter(np.arange(0, Ntrs), y, s=20)

            if Nremove[curr] > 0:
                info = scipy.ndimage.measurements.label(sc_idx[curr])
                for cluster in np.arange(1, info[1] + 1):
                    temp = np.where(info[0] == cluster)[0]
                    axes[curr, 0].axvspan(temp.min() - bound, temp.max() + bound, alpha=.5, color='red')

            axes[curr, 0].set_ylabel('Framewise Disp. (' + FD + ')')
            axes[curr, 0].set_title(FD + ': ' + str(100 * Nremove[curr] / Ntrs)[0:4]
                                    + '% of scan (' + str(Nremove[curr]) + ' volumes) would be scrubbed (FD thr.= ' +
                                    str(FD_thr[curr]) + ')')
            plt.text(Ntrs + 1, FD_thr[curr] - .01, FD + ' = ' + str(FD_thr[curr]), fontsize=fontsize)
            plt.text(Ntrs, fd_mean - .01, 'avg = ' + str(fd_mean), fontsize=fontsize)
            axes[curr, 0].set_xlim((-bound, Ntrs + 8))

        plt.tight_layout()
        axes[curr, 0].set_xlabel(tr_label)
        file_fd_plot = FD + '_timeseries' + png_append
        fig.savefig(pjoin(out_figure_path, file_fd_plot))
        plt.close(fig)
        del fig, axes
        print(FD + ' timeseries plot saved')

    else:
        print(FD + ' not found: ' + FD + ' timeseries not plotted')
        file_fd_plot = None

    # Carpet and DVARS plots - before & after nuisance regression

    # need to create mask file to input to DVARS function
    mask_file = pjoin(out_figure_path, 'mask_temp.nii.gz')
    nifti_masker = NiftiMasker(mask_strategy='epi', standardize=False)
    nifti_masker.fit(img)
    nifti_masker.mask_img_.to_filename(mask_file)

    # create 2 or 3 carpet plots, depending on if LP filter is also applied
    Ncarpet = 2
    total_sz = int(16)
    carpet_scale = 840
    y_labels = ['Input (voxels)', 'Output \'cleaned\'']
    imgs = [img, new_img]
    img_files = [img_file, save_img_file]
    color = ['red', 'salmon']
    labels = ['input', 'cleaned']
    if lp_filter:
        Ncarpet = 3
        total_sz = int(20)
        carpet_scale = carpet_scale * (9/8)
        y_labels = ['Input', 'Clean Pre-LP', 'Clean LP']
        imgs.insert(1, temp_img)
        img_files.insert(1, temp_img_file)
        color.insert(1, 'firebrick')
        labels.insert(1, 'clean pre-LP')
        labels[-1] = 'clean LP'

    dvars = []
    print('Computing dvars...')
    for in_file in img_files:
        temp = nac.compute_dvars(in_file=in_file, in_mask=mask_file)[1]
        dvars.append(np.hstack((temp.mean(), temp)))
        del temp

    small_sz = 2
    fig = plt.figure(figsize=(def_img_size * 1.5, def_img_size + ((Ncarpet - 2) * 1)))
    row_used = 0
    if np.sum(fd_idx) > 0:  # if FD data is available
        row_used = row_used + small_sz
        ax0 = plt.subplot2grid((total_sz, 1), (0, 0), rowspan=small_sz)
        ax0.plot(y)
        ax0.scatter(np.arange(0, Ntrs), y, s=10)
        curr = 0
        if Nremove[curr] > 0:
            info = scipy.ndimage.measurements.label(sc_idx[curr])
            for cluster in np.arange(1, info[1] + 1):
                temp = np.where(info[0] == cluster)[0]
                ax0.axvspan(temp.min() - bound, temp.max() + bound, alpha=.5, color='red')
        ax0.set_ylabel(FD)

        for side in ["top", "right", "bottom"]:
            ax0.spines[side].set_color('none')
            ax0.spines[side].set_visible(False)

        ax0.set_xticks([])
        ax0.set_xlim((-.5, Ntrs - .5))
        ax0.spines["left"].set_position(('outward', 10))

    ax_d = plt.subplot2grid((total_sz, 1), (row_used, 0), rowspan=small_sz)
    for iplot in np.arange(len(dvars)):
        ax_d.plot(dvars[iplot], color=color[iplot], label=labels[iplot])
    ax_d.set_ylabel('DVARS')
    for side in ["top", "right", "bottom"]:
        ax_d.spines[side].set_color('none')
        ax_d.spines[side].set_visible(False)
    ax_d.set_xticks([])
    ax_d.set_xlim((-.5, Ntrs - .5))
    ax_d.spines["left"].set_position(('outward', 10))
    ax_d.legend(fontsize=fontsize - 2)
    row_used = row_used + small_sz

    st = 0
    carpet_each = int((total_sz - row_used) / Ncarpet)
    for idx, img_curr in enumerate(imgs):
        ax_curr = plt.subplot2grid((total_sz, 1), (row_used + st, 0), rowspan=carpet_each)
        fig = plotting.plot_carpet(img_curr, figure=fig, axes=ax_curr)
        ax_curr.set_ylabel(y_labels[idx])
        for side in ["bottom", "left"]:
            ax_curr.spines[side].set_position(('outward', 10))

        if idx < len(imgs)-1:
            ax_curr.spines["bottom"].set_visible(False)
            ax_curr.set_xticklabels('')
            ax_curr.set_xlabel('')
            st = st + carpet_each

    file_carpet_plot = 'Carpet_plots' + png_append
    fig.savefig(pjoin(out_figure_path, file_carpet_plot))
    plt.close()
    del fig, ax0, ax_curr, ax_d, dvars
    os.remove(mask_file)
    print('Carpet/DVARS plots saved')
    if lp_filter:
        os.remove(temp_img_file)
        del temp_img

    # Display T-stat maps for nuisance regressors
    # create mean img
    img_size = (img.shape[0], img.shape[1], img.shape[2])
    mean_img = nb.Nifti1Image(np.reshape(data_mean, img_size), img.affine)
    mx = []
    for idx, col in enumerate(df.columns):
        if not 'drift' in col and not constant in col:
            con_vector = np.zeros((1, df.shape[1]))
            con_vector[0, idx] = 1
            con = results.Tcontrast(con_vector)
            mx.append(np.max(np.absolute([con.t.min(), con.t.max()])))
    mx = .8 * np.max(mx)
    t_png = 'Tstat_'
    file_tstat = []
    for idx, col in enumerate(df.columns):
        if not 'drift' in col and not constant in col:
            con_vector = np.zeros((1, df.shape[1]))
            con_vector[0, idx] = 1
            con = results.Tcontrast(con_vector)
            m_img = nb.Nifti1Image(np.reshape(con, img_size), img.affine)

            title_str = col + ' Tstat'
            fig = plotting.plot_stat_map(m_img, mean_img, threshold=3, colorbar=True, display_mode='z', vmax=mx,
                                         title=title_str,
                                         cut_coords=7)
            file_temp = t_png + col + png_append
            fig.savefig(pjoin(out_figure_path, file_temp))
            file_tstat.append({'name': col, 'file': file_temp})
            plt.close()
            del fig, file_temp
            print(title_str + ' map saved')

    # Display R-sq map for nuisance regressors
    m_img = nb.Nifti1Image(np.reshape(rsquare, img_size), img.affine)
    title_str = 'Nuisance Rsq'
    mx = .95 * rsquare.max()
    fig = plotting.plot_stat_map(m_img, mean_img, threshold=.2, colorbar=True, display_mode='z', vmax=mx,
                                 title=title_str,
                                 cut_coords=7)
    file_rsq_map = 'Rsquared' + png_append
    fig.savefig(pjoin(out_figure_path, file_rsq_map))
    plt.close()
    del fig
    print(title_str + ' map saved')

    ######### html report
    templateLoader = jinja2.FileSystemLoader(searchpath="/")
    templateEnv = jinja2.Environment(loader=templateLoader)

    templateVars = {"img_file": img_file,
                    "save_img_file": save_img_file,
                    "Ntrs": Ntrs,
                    "tsv_file": tsv_file,
                    "col_names": col_names,
                    "hp_filter": hp_filter,
                    "lp_filter": lp_filter,
                    "file_design_matrix": file_design_matrix,
                    "file_corr_matrix": file_corr_matrix,
                    "file_fd_plot": file_fd_plot,
                    "file_rsq_map": file_rsq_map,
                    "file_tstat": file_tstat,
                    "x_scale": x_scale_html,
                    "mtx_scale": mtx_scale,
                    "file_carpet_plot": file_carpet_plot,
                    "carpet_scale": carpet_scale
                    }

    TEMPLATE_FILE = pjoin(os.getcwd(), "report_template.html")
    template = templateEnv.get_template(TEMPLATE_FILE)

    outputText = template.render(templateVars)

    html_file = pjoin(out_figure_path, img_name[0:img_name.find('.')] + '.html')
    with open(html_file, "w") as f:
        f.write(outputText)

    print('')
    print('HTML report: ' + html_file)
    return new_img
                           period_cut=160)

###############################################################################
# Now that we have specified the model, we can run it on the fMRI image
fmri_glm = fmri_glm.fit(fmri_img, events)

###############################################################################
# One can inspect the design matrix (rows represent time, and
# columns contain the predictors).
design_matrix = fmri_glm.design_matrices_[0]

###############################################################################
# Formally, we have taken the first design matrix, because the model is
# implictily meant to for multiple runs.
from nistats.reporting import plot_design_matrix
plot_design_matrix(design_matrix)
import matplotlib.pyplot as plt
plt.show()

###############################################################################
# Save the design matrix image to disk
# first create a directory where you want to write the images

import os
outdir = 'results'
if not os.path.exists(outdir):
    os.mkdir(outdir)

from os.path import join
plot_design_matrix(design_matrix, output_file=join(outdir, 'design_matrix.png'))
                           period_cut=160)

###############################################################################
# Now that we have specified the model, we can run it on the fMRI image
fmri_glm = fmri_glm.fit(fmri_img, events)

###############################################################################
# One can inspect the design matrix (rows represent time, and
# columns contain the predictors).
design_matrix = fmri_glm.design_matrices_[0]

###############################################################################
# Formally, we have taken the first design matrix, because the model is
# implictily meant to for multiple runs.
from nistats.reporting import plot_design_matrix
plot_design_matrix(design_matrix)
import matplotlib.pyplot as plt
plt.show()

###############################################################################
# Save the design matrix image to disk
# first create a directory where you want to write the images

import os
outdir = 'results'
if not os.path.exists(outdir):
    os.mkdir(outdir)

from os.path import join
plot_design_matrix(design_matrix,
                   output_file=join(outdir, 'design_matrix.png'))
    #--- definng the model
    fmri_glm = FirstLevelModel(
        tr,
        noise_model='ar1',
        standardize=False,
        hrf_model='spm',
        drift_model='cosine',
        period_cut=128,
    )

    fmri_glm_non_smoothed = fmri_glm.fit(fmri,
                                         events,
                                         confounds=confounds_clean)
    design_matrix = fmri_glm_non_smoothed.design_matrices_[0]
    fig, ax = plt.subplots(figsize=(15, 8))
    plot_design_matrix(design_matrix, ax=ax)
    fig.savefig(f'{out_dir}{sub}/figures/{sub}_design_matrix.png')

    #--- defining contrasts
    trial_dummies = pd.get_dummies(design_matrix.columns)
    trial_contrasts = pd.DataFrame.to_dict(trial_dummies, orient='list')
    trial_contrasts['overall'] = [
        1 if i[0] == 'Q' else 0 for i in design_matrix.columns
    ]

    fig, ax = plt.subplots(n_trials, 1)
    fig.set_size_inches(22, 40)

    for i in range(n_trials):
        plt.figure()
        _ = plot_contrast_matrix(trial_contrasts[f'Q{i+1:02}'],
        for r in range(par_offset):
            contrast_motion[r, 6 + r] = 1
        contrast_list['con_F_motion'] = contrast_motion

        # Estimate and plot contrasts
        for cont in contrast_list:
            z_map = fmri_glm.compute_contrast(contrast_list[cont],
                                              stat_type=cont[4],
                                              output_type='z_score')
            identifier = '%s_sub-%02d_%s' % (cont, sdx, method)
            out_file = '%s/zmap_%s' % (res_path, identifier)
            z_map.to_filename('%s.nii.gz' % out_file)

        # Plot design matrices and contrasts
        plot_design_matrix(fmri_glm.design_matrices_[0],
                           output_file='%s/design_matrix_01_sub-%02d.svg' %
                           (res_path, sdx))

        plot_design_matrix(fmri_glm.design_matrices_[1],
                           output_file='%s/design_matrix_02_sub-%02d.svg' %
                           (res_path, sdx))

        plot_design_matrix(fmri_glm.design_matrices_[2],
                           output_file='%s/design_matrix_03_sub-%02d.svg' %
                           (res_path, sdx))

        plot_design_matrix(fmri_glm.design_matrices_[3],
                           output_file='%s/design_matrix_04_sub-%02d.svg' %
                           (res_path, sdx))

        # Plot contrast matrix
confounds = pd.DataFrame(high_variance_confounds(fmri_img, percentile=1))
fmri_glm = FirstLevelModel(t_r=2.5,
                           noise_model='ar1',
                           standardize=False,
                           hrf_model='spm',
                           drift_model='cosine',
                           period_cut=160,
                           smoothing_fwhm=smoothing)

fmri_glm = fmri_glm.fit(fmri_img, events, confounds=confounds)
design_matrix = fmri_glm.design_matrices_[0]
# Save the design matrix image to disk
if not os.path.exists(outdir): os.mkdir(outdir)
plot_design_matrix(design_matrix,
                   output_file=join(
                       outdir,
                       subject + '_block_%s_' % '_'.join(map(str, run_order)) +
                       '_design_matrix.png'))
plt.close()
print('Design matrix plot saved to: ' + join(
    outdir, subject + '_block_%s_' % '_'.join(map(str, run_order)) +
    '_design_matrix.png'))
# The first column contains the expected reponse profile of regions which are sensitive to the stimuli in the condition
if cond1 in design_matrix.columns:
    plt.plot(design_matrix[cond1])
    plt.xlabel('Time (sec)')
    plt.title('Expected ' + cond1 + ' Response')
    plt.savefig(join(outdir, cond1 + '_expected_response.png'))

###############################################################################
# Detecting voxels with significant effects
Exemplo n.º 15
0
def denoise(img_file,
            tsv_file,
            out_path,
            col_names=False,
            hp_filter=False,
            lp_filter=False,
            out_figure_path=False):

    nii_ext = '.nii.gz'
    FD_thr = [.5]
    sc_range = np.arange(-1, 3)
    constant = 'constant'

    # get file info
    base_file = os.path.basename(img_file)
    save_img_file = pjoin(out_path, base_file[0:base_file.find('.')] + \
                          '_NR' + nii_ext)

    # read in files
    img = load_niimg(img_file)
    data = img.get_data()
    df = pandas.read_csv(tsv_file, '\t', na_values='n/a')
    Ntrs = df.as_matrix().shape[0]
    print('# of TRs: ' + str(Ntrs))
    assert (Ntrs == data.shape[len(data.shape) - 1])

    # select columns to use as nuisance regressors
    str_append = '  [ALL regressors in CSV]'
    if col_names:
        df = df[col_names]
        str_append = '  [SELECTED regressors in CSV]'

    # fill in missing nuisance values with mean for that variable
    for col in df.columns:
        if sum(df[col].isnull()) > 0:
            print('Filling in ' + str(sum(df[col].isnull())) +
                  ' NaN value for ' + col)
            df[col] = df[col].fillna(np.mean(df[col]))
    print('# of Confound Regressors: ' + str(len(df.columns)) + str_append)

    # implement HP filter in regression
    TR = img.header.get_zooms()[-1]
    frame_times = np.arange(Ntrs) * TR
    if hp_filter:
        hp_filter = float(hp_filter)
        assert (hp_filter > 0)
        period_cutoff = 1. / hp_filter
        df = make_design_matrix(frame_times,
                                period_cut=period_cutoff,
                                add_regs=df.as_matrix(),
                                add_reg_names=df.columns.tolist())
        # fn adds intercept into dm

        hp_cols = [col for col in df.columns if 'drift' in col]
        print('# of High-pass Filter Regressors: ' + str(len(hp_cols)))
    else:
        # add in intercept column into data frame
        df[constant] = 1
    dm = df.as_matrix()

    # prep data
    data = np.reshape(data, (-1, Ntrs))
    data_mean = np.mean(data, axis=1)
    Nvox = len(data_mean)

    # setup and run regression
    model = regression.OLSModel(dm)
    results = model.fit(data.T)
    if not hp_filter:
        results_orig_resid = copy.deepcopy(
            results.resid)  # save for rsquared computation

    # apply low-pass filter
    if lp_filter:
        # input to butterworth fn is time x voxels
        low_pass = float(lp_filter)
        Fs = 1. / TR
        if low_pass >= Fs / 2:
            raise ValueError(
                'Low pass filter cutoff if too close to the Nyquist frequency (%s)'
                % (Fs / 2))

        results.resid = butterworth(results.resid,
                                    sampling_rate=Fs,
                                    low_pass=low_pass,
                                    high_pass=None)

    # add mean back into data
    clean_data = results.resid.T + np.reshape(
        data_mean, (Nvox, 1))  # add mean back into residuals

    # save out new data file
    clean_data = np.reshape(clean_data, img.shape).astype('float32')
    #new_img = nb.Nifti1Image(clean_data, img.affine)
    #inherit header from original
    new_header = header = img.header.copy()
    new_img = nb.Nifti1Image(clean_data, None, header=new_header)
    new_img.to_filename(save_img_file)

    ######### generate Rsquared map for confounds only
    if hp_filter:
        # first remove low-frequency information from data
        hp_cols.append(constant)
        model_first = regression.OLSModel(df[hp_cols].as_matrix())
        results_first = model_first.fit(data.T)
        results_first_resid = copy.deepcopy(results_first.resid)
        del results_first, model_first

        # compute sst - borrowed from matlab
        sst = np.square(
            np.linalg.norm(results_first_resid -
                           np.mean(results_first_resid, axis=0),
                           axis=0))

        # now regress out 'true' confounds to estimate their Rsquared
        nr_cols = [col for col in df.columns if 'drift' not in col]
        model_second = regression.OLSModel(df[nr_cols].as_matrix())
        results_second = model_second.fit(results_first_resid)

        # compute sse - borrowed from matlab
        sse = np.square(np.linalg.norm(results_second.resid, axis=0))

        del results_second, model_second, results_first_resid

    elif not hp_filter:
        # compute sst - borrowed from matlab
        sst = np.square(
            np.linalg.norm(data.T - np.mean(data.T, axis=0), axis=0))

        # compute sse - borrowed from matlab
        sse = np.square(np.linalg.norm(results_orig_resid, axis=0))

        del results_orig_resid

    # compute rsquared of nuisance regressors
    zero_idx = scipy.logical_and(sst == 0, sse == 0)
    sse[zero_idx] = 1
    sst[zero_idx] = 1  # would be NaNs - become rsquared = 0
    rsquare = 1 - np.true_divide(sse, sst)
    rsquare[np.isnan(rsquare)] = 0

    ######### Visualizing DM & outputs
    fontsize = 12
    fontsize_title = 14
    if not out_figure_path:
        out_figure_path = save_img_file[0:save_img_file.find('.')] + '_figures'

    if not os.path.isdir(out_figure_path):
        os.mkdir(out_figure_path)
    img_name = os.path.basename(img_file)
    png_append = '_' + img_name[0:img_name.find('.')] + '.png'

    # DM corr matrix
    cm = df[df.columns[0:-1]].corr()
    mask = np.zeros_like(cm, dtype=np.bool)
    mask[np.triu_indices_from(mask)] = True
    sz = 8
    if cm.shape[0] > sz:
        sz = sz + ((cm.shape[0] - sz) * .3)
    fig, ax = plt.subplots(figsize=(sz, sz))
    cmap = sns.diverging_palette(220, 10, as_cmap=True)
    sns.heatmap(cm,
                mask=mask,
                cmap=cmap,
                center=0,
                vmax=cm[cm < 1].max().max(),
                vmin=cm[cm < 1].min().min(),
                square=True,
                linewidths=.5,
                cbar_kws={"shrink": .6})
    ax.set_xticklabels(ax.get_xticklabels(),
                       rotation=60,
                       ha='right',
                       fontsize=fontsize)
    ax.set_yticklabels(cm.columns.tolist(),
                       rotation=-30,
                       va='bottom',
                       fontsize=fontsize)
    ax.set_title('Nuisance Corr. Matrix', fontsize=fontsize_title)
    plt.tight_layout()
    fig.savefig(pjoin(out_figure_path, 'Corr_matrix_regressors' + png_append))
    plt.close(fig)
    del fig, ax

    # DM of Nuisance Regressors (all)
    tr_label = 'TR (Volume #)'
    fig, ax = plt.subplots(figsize=(4, sz))
    reporting.plot_design_matrix(df, ax=ax)
    ax.set_title('Nuisance Design Matrix', fontsize=fontsize_title)
    ax.set_xticklabels(ax.get_xticklabels(),
                       rotation=60,
                       ha='right',
                       fontsize=fontsize)
    ax.set_yticklabels(ax.get_yticklabels(), fontsize=fontsize)
    ax.set_ylabel(tr_label, fontsize=fontsize)
    plt.tight_layout()
    fig.savefig(pjoin(out_figure_path, 'Design_matrix' + png_append))
    plt.close(fig)
    del fig, ax

    # FD timeseries plot
    FD = 'FD'
    poss_names = ['FramewiseDisplacement', FD, 'framewisedisplacement', 'fd']
    idx = [df.columns.__contains__(i) for i in poss_names]
    FD_name = poss_names[idx == True]
    y = df[FD_name].as_matrix()
    Nremove = []
    sc_idx = []
    for thr_idx, thr in enumerate(FD_thr):
        idx = y >= thr
        sc_idx.append(copy.deepcopy(idx))
        for iidx in np.where(idx)[0]:
            for buffer in sc_range:
                curr_idx = iidx + buffer
                if curr_idx >= 0 and curr_idx <= len(idx):
                    sc_idx[thr_idx][curr_idx] = True
        Nremove.append(np.sum(sc_idx[thr_idx]))

    Nplots = len(FD_thr)
    sns.set(font_scale=1.5)
    sns.set_style('ticks')
    fig, axes = plt.subplots(Nplots, 1, figsize=(12, 4), squeeze=False)
    sns.despine()
    bound = .4
    for curr in np.arange(0, Nplots):
        axes[curr, 0].plot(y)
        axes[curr, 0].plot((-bound, Ntrs + bound),
                           FD_thr[curr] * np.ones((1, 2))[0],
                           '--',
                           color='black')
        axes[curr, 0].scatter(np.arange(0, Ntrs), y, s=20)

        if Nremove[curr] > 0:
            info = scipy.ndimage.measurements.label(sc_idx[curr])
            for cluster in np.arange(1, info[1] + 1):
                temp = np.where(info[0] == cluster)[0]
                axes[curr, 0].axvspan(temp.min() - bound,
                                      temp.max() + bound,
                                      alpha=.5,
                                      color='red')
            axes[curr, 0].set_ylabel('Framewise Disp. (' + FD + ')')
            axes[curr, 0].set_title(FD + ': ' +
                                    str(100 * Nremove[curr] / Ntrs)[0:4] +
                                    '% of scan (' + str(Nremove[curr]) +
                                    ' volumes) would be scrubbed (FD thr.= ' +
                                    str(FD_thr[curr]) + ')')
            plt.text(Ntrs + 1,
                     FD_thr[curr] - .01,
                     FD + ' = ' + str(FD_thr[curr]),
                     fontsize=fontsize)
            axes[curr, 0].set_xlim((-bound, Ntrs + 8))
    plt.tight_layout()
    axes[curr, 0].set_xlabel(tr_label)
    fig.savefig(pjoin(out_figure_path, FD + '_timeseries' + png_append))
    plt.close(fig)
    del fig, axes

    # Display T-stat maps for nuisance regressors
    # create mean img
    img_size = (img.shape[0], img.shape[1], img.shape[2])
    mean_img = nb.Nifti1Image(np.reshape(data_mean, img_size), img.affine)
    mx = []
    for idx, col in enumerate(df.columns):
        if not 'drift' in col and not constant in col:
            con_vector = np.zeros((1, df.shape[1]))
            con_vector[0, idx] = 1
            con = results.Tcontrast(con_vector)
            mx.append(np.max(np.absolute([con.t.min(), con.t.max()])))
    mx = .8 * np.max(mx)
    t_png = 'Tstat_'
    for idx, col in enumerate(df.columns):
        if not 'drift' in col and not constant in col:
            con_vector = np.zeros((1, df.shape[1]))
            con_vector[0, idx] = 1
            con = results.Tcontrast(con_vector)
            print(con_vector)
            m_img = nb.Nifti1Image(np.reshape(con, img_size), img.affine)

            title_str = col + ' Tstat map '
            print(title_str)
            fig = plotting.plot_stat_map(m_img,
                                         mean_img,
                                         threshold=3,
                                         colorbar=True,
                                         display_mode='z',
                                         vmax=mx,
                                         title=title_str,
                                         cut_coords=7)
            fig.savefig(pjoin(out_figure_path, t_png + col + png_append))
            plt.close()
            del fig

    # Display R-sq map for nuisance regressors
    m_img = nb.Nifti1Image(np.reshape(rsquare, img_size), img.affine)
    title_str = 'Nuisance Rsq map '
    print(title_str)
    mx = .95 * rsquare.max()
    fig = plotting.plot_stat_map(m_img,
                                 mean_img,
                                 threshold=.2,
                                 colorbar=True,
                                 display_mode='z',
                                 vmax=mx,
                                 title=title_str,
                                 cut_coords=7)
    fig.savefig(pjoin(out_figure_path, 'Rsquared' + png_append))
    plt.close()
    del fig