Exemplo n.º 1
0
 def test_get_delta(self):
     feature_selection = fs.FeatureSelection(None, None, None, None, None,
                                             ['IG', '3', '5'])
     self.assertEqual(5, feature_selection.get_delta())
     feature_selection = fs.FeatureSelection(None, None, None, None, None,
                                             ['IG', '3'])
     self.assertEqual(0, feature_selection.get_delta())
Exemplo n.º 2
0
    def test_get_fold(self):
        feature_selection = fs.FeatureSelection(['trainingn'] * 4, None, None,
                                                None, None, ['IG', '3', '5'])
        self.assertEqual(3, feature_selection.get_fold())

        feature_selection = fs.FeatureSelection(['trainingn'] * 14, None, None,
                                                None, None, ['IG'])
        self.assertEqual(10, feature_selection.get_fold())
Exemplo n.º 3
0
    def test_find_attributes_by_ranking(self):
        path = datasetsDir(self) + 'minigolf' + SEP + 'weather'
        _training = training(path)
        attributes, klass = metadata(path)
        _test = test(path)
        _gold = gold(path)

        feature_selection = fs.FeatureSelection(_training, attributes, klass,
                                                _test, _gold, ['IG', '3'])

        ig_for_attr1 = information_gain(attributes[0], klass, _training)
        self.assertAlmostEqual(0.324409, ig_for_attr1, 6)
        self.assertEqual('outlook', attributes[0].name)
        ig_for_attr2 = information_gain(attributes[1], klass, _training)
        self.assertAlmostEqual(0.102187, ig_for_attr2, 6)
        self.assertEqual('temperature', attributes[1].name)
        ig_for_attr3 = information_gain(attributes[2], klass, _training)
        self.assertAlmostEqual(0.091091, ig_for_attr3, 6)
        self.assertEqual('humidity', attributes[2].name)
        ig_for_attr4 = information_gain(attributes[3], klass, _training)
        self.assertAlmostEqual(0.072780, ig_for_attr4, 6)
        self.assertEqual('windy', attributes[3].name)
        attributes_to_remove = feature_selection.find_attributes_by_ranking(
            'information_gain', 3)
        self.assertEqual(1, len(attributes_to_remove))
        self.assertEqual('windy', attributes_to_remove[0].name)
Exemplo n.º 4
0
 def test_invert_attrbute_selection(self):
     path = datasetsDir(self) + 'numerical' + SEP + 'person'
     _attributes, _klass = metadata(path)
     feature_selection = fs.FeatureSelection(None, _attributes, None, None, None, ['IG'])
     unselected = feature_selection.invert_attribute_selection([_attributes[0], _attributes[1]])
     self.assertEqual(len(_attributes) - 2, len(unselected))
     self.assertEqual([_attributes[2], _attributes[3], _attributes[4], _attributes[5], _attributes[6], _attributes[7]], unselected)
Exemplo n.º 5
0
    def test_backward_select(self):
        path = datasetsDir(self) + 'minigolf' + SEP + 'weather'
        _training = training(path)
        _attributes, _klass = metadata(path)
        _test = test(path)
        _gold = gold(path)
        
        verify_training = copy.deepcopy(_training)
        verify_attributes = copy.deepcopy(_attributes)

        feat_sel = fs.FeatureSelection(_training, _attributes, _klass, _test, _gold, ['1R', '4', '0.1'])
        feat_sel.backward_elimination()
                
        self.assertEqual(3, len(_attributes))
        self.verify_number_of_attributes(_training, 3)
        self.verify_number_of_attributes(_test, 3)
        self.verify_number_of_attributes(_gold, 3)

        #verification
        #level 0
        avg_acc = feat_sel.avg_accuracy_by_cross_validation(verify_training.cross_validation_datasets(4), 4, verify_attributes)
        self.assertAlmostEqual(0.5416666, avg_acc, 6)
        
        verification_cv_datasets = verify_training.cross_validation_datasets(4)
        accuracies = {}
        for attribute in verify_attributes:
            attributes = verify_attributes[:]
            attributes.remove(attribute)
            accuracies[(attributes[0].name,attributes[1].name,attributes[2].name)] = feat_sel.avg_accuracy_by_cross_validation(verification_cv_datasets, 4, attr.Attributes(attributes))
        
#        {('outlook', 'humidity', 'windy'): 0.54166666666666663, 
#        ('outlook', 'temperature', 'windy'): 0.54166666666666663, 
#        ('temperature', 'humidity', 'windy'): 0.29166666666666663, 
#        ('outlook', 'temperature', 'humidity'): 0.79166666666666663}

        self.assertAlmostEqual(0.5416666, accuracies[('outlook', 'humidity', 'windy')], 6)
        self.assertAlmostEqual(0.5416666, accuracies[('outlook', 'temperature', 'windy')], 6)
        self.assertAlmostEqual(0.2916666, accuracies[('temperature', 'humidity', 'windy')], 6)
        self.assertAlmostEqual(0.7916666, accuracies[('outlook', 'temperature', 'humidity')], 6)
#        
        #('outlook', 'temperature', 'humidity') selected
        accuracies = {}

        for each in verify_attributes:
            if each.name == 'windy':
                windy = each
        verify_attributes.remove(windy)
        for attribute in verify_attributes:
            attributes = verify_attributes[:]
            attributes.remove(attribute)
            accuracies[(attributes[0].name,attributes[1].name)] = feat_sel.avg_accuracy_by_cross_validation(verification_cv_datasets, 4, attr.Attributes(attributes))
        
        self.assertAlmostEqual(0.7916666, accuracies[('outlook','humidity')], 6)
        self.assertAlmostEqual(0.7916666, accuracies['outlook', 'temperature'], 6)
        self.assertAlmostEqual(0.4166666, accuracies[('temperature','humidity')], 6)
Exemplo n.º 6
0
 def test_cannot_perform_rank_select_on_cont_attrs(self):
     path = datasetsDir(self) + 'numerical' + SEP + 'person'
     _training = training(path)
     attributes, klass = metadata(path)
     _test = test(path)
     feature_selection = fs.FeatureSelection(_training, attributes, klass, _test, None, ['IG','2'])
     try:
         feature_selection.by_rank()
         self.fail('should throw error as path points to continuous attributes')
     except inv.InvalidDataError:
         pass
Exemplo n.º 7
0
    def test_forward_select(self):
        path = datasetsDir(self) + 'minigolf' + SEP + 'weather'
        _training = training(path)
        _attributes, _klass = metadata(path)
        _test = test(path)
        _gold = gold(path)

        verify_training = copy.deepcopy(_training)
        verify_attributes = copy.deepcopy(_attributes)

        feat_sel = fs.FeatureSelection(_training, _attributes, _klass, _test,
                                       _gold, ['1R', '4', '0.1'])
        feat_sel.forward_selection()

        self.assertEqual(1, len(_attributes))
        self.assertEqual('outlook', _attributes[0].name)
        self.verify_number_of_attributes(_training, 1)
        self.verify_number_of_attributes(_test, 1)
        self.verify_number_of_attributes(_gold, 1)

        #verification
        verification_cv_datasets = verify_training.cross_validation_datasets(4)
        accuracies = {}
        for attribute in verify_attributes:
            accuracies[
                attribute.name] = feat_sel.avg_accuracy_by_cross_validation(
                    verification_cv_datasets, 4, attr.Attributes([attribute]))

        #'windy': 0.41666666666666663, 'outlook': 0.79166666666666663, 'temperature': 0.41666666666666663, 'humidity': 0.54166666666666663
        self.assertAlmostEqual(0.4166666, accuracies['windy'], 6)
        self.assertAlmostEqual(0.79166666, accuracies['outlook'], 6)
        self.assertAlmostEqual(0.4166666, accuracies['temperature'], 6)
        self.assertAlmostEqual(0.5416666, accuracies['humidity'], 6)

        #outlook selected
        accuracies = {}
        for each in verify_attributes:
            if each.name == 'outlook':
                outlook = each
        verify_attributes.remove(outlook)
        for attribute in verify_attributes:
            accuracies[(
                'outlook',
                attribute.name)] = feat_sel.avg_accuracy_by_cross_validation(
                    verification_cv_datasets, 4,
                    attr.Attributes([outlook, attribute]))

        #{('outlook', 'humidity'): 0.79166666666666663, ('outlook', 'temperature'): 0.79166666666666663, ('outlook', 'windy'): 0.54166666666666663}
        self.assertAlmostEqual(0.7916666, accuracies[('outlook', 'humidity')],
                               6)
        self.assertAlmostEqual(0.7916666, accuracies['outlook', 'temperature'],
                               6)
        self.assertAlmostEqual(0.5416666, accuracies[('outlook', 'windy')], 6)