Exemplo n.º 1
0
def wind_rh_according_to_4D_data(
        initTime=None,
        fhour=6,
        day_back=0,
        model='ECMWF',
        sta_fcs={
            'lon': [101.82, 101.32, 101.84, 102.23, 102.2681],
            'lat': [28.35, 27.91, 28.32, 27.82, 27.8492],
            'altitude': [3600, 3034.62, 3240, 1669, 1941.5],
            'name': ['健美乡', '项脚乡', '\n锦屏镇', '\n马道镇', 'S9005  ']
        },
        draw_zd=True,
        levels=[1000, 950, 925, 900, 850, 800, 700, 600, 500],
        map_ratio=19 / 9,
        zoom_ratio=1,
        south_China_sea=False,
        area='全国',
        city=False,
        output_dir=None,
        bkgd_type='satellite',
        data_source='MICAPS'):

    # micaps data directory
    if (area != '全国'):
        south_China_sea = False

    # prepare data
    if (area != '全国'):
        cntr_pnt, zoom_ratio = utl.get_map_area(area_name=area)

    cntr_pnt = np.append(np.mean(sta_fcs['lon']), np.mean(sta_fcs['lat']))
    map_extent = [0, 0, 0, 0]
    map_extent[0] = cntr_pnt[0] - zoom_ratio * 1 * map_ratio
    map_extent[1] = cntr_pnt[0] + zoom_ratio * 1 * map_ratio
    map_extent[2] = cntr_pnt[1] - zoom_ratio * 1
    map_extent[3] = cntr_pnt[1] + zoom_ratio * 1

    bkgd_level = utl.cal_background_zoom_ratio(zoom_ratio)
    # micaps data directory
    if (data_source == 'MICAPS'):
        try:
            data_dir = [
                utl.Cassandra_dir(data_type='high',
                                  data_source=model,
                                  var_name='HGT',
                                  lvl=''),
                utl.Cassandra_dir(data_type='high',
                                  data_source=model,
                                  var_name='RH',
                                  lvl=''),
                utl.Cassandra_dir(data_type='high',
                                  data_source=model,
                                  var_name='UGRD',
                                  lvl=''),
                utl.Cassandra_dir(data_type='high',
                                  data_source=model,
                                  var_name='VGRD',
                                  lvl=''),
                utl.Cassandra_dir(data_type='surface',
                                  data_source=model,
                                  var_name='u10m'),
                utl.Cassandra_dir(data_type='surface',
                                  data_source=model,
                                  var_name='v10m'),
                utl.Cassandra_dir(data_type='surface',
                                  data_source=model,
                                  var_name='Td2m'),
                utl.Cassandra_dir(data_type='surface',
                                  data_source=model,
                                  var_name='T2m')
            ]
        except KeyError:
            raise ValueError('Can not find all directories needed')

        # get filename
        if (initTime != None):
            filename = utl.model_filename(initTime, fhour)
        else:
            filename = utl.filename_day_back_model(day_back=day_back,
                                                   fhour=fhour)
            initTime = filename[0:8]

        # retrieve data from micaps server
        gh = MICAPS_IO.get_model_3D_grid(directory=data_dir[0][0:-1],
                                         filename=filename,
                                         levels=levels)
        if (gh is None):
            return
        gh['data'].values = gh['data'].values * 10

        rh = MICAPS_IO.get_model_3D_grid(directory=data_dir[1][0:-1],
                                         filename=filename,
                                         levels=levels,
                                         allExists=False)
        if rh is None:
            return

        u = MICAPS_IO.get_model_3D_grid(directory=data_dir[2][0:-1],
                                        filename=filename,
                                        levels=levels,
                                        allExists=False)
        if u is None:
            return

        v = MICAPS_IO.get_model_3D_grid(directory=data_dir[3][0:-1],
                                        filename=filename,
                                        levels=levels,
                                        allExists=False)
        if v is None:
            return

        u10m = MICAPS_IO.get_model_grid(directory=data_dir[4],
                                        filename=filename)
        if u10m is None:
            return

        v10m = MICAPS_IO.get_model_grid(directory=data_dir[5],
                                        filename=filename)
        if v10m is None:
            return

        td2m = MICAPS_IO.get_model_grid(directory=data_dir[6],
                                        filename=filename)
        if td2m is None:
            return

        t2m = MICAPS_IO.get_model_grid(directory=data_dir[7],
                                       filename=filename)
        if t2m is None:
            return

        if (draw_zd == True):
            validtime = (datetime.strptime('20' + initTime, '%Y%m%d%H') +
                         timedelta(hours=fhour)).strftime("%Y%m%d%H")
            directory_obs = utl.Cassandra_dir(data_type='surface',
                                              data_source='OBS',
                                              var_name='PLOT_ALL')
            try:
                zd_sta = MICAPS_IO.get_station_data(filename=validtime +
                                                    '0000.000',
                                                    directory=directory_obs,
                                                    dropna=True,
                                                    cache=False)
                obs_valid = True
            except:
                zd_sta = MICAPS_IO.get_station_data(directory=directory_obs,
                                                    dropna=True,
                                                    cache=False)
                obs_valid = False

            zd_lon = zd_sta['lon'].values
            zd_lat = zd_sta['lat'].values
            zd_alt = zd_sta['Alt'].values
            zd_u, zd_v = mpcalc.wind_components(
                zd_sta['Wind_speed_2m_avg'].values * units('m/s'),
                zd_sta['Wind_angle_2m_avg'].values * units.deg)

            idx_zd = np.where((zd_lon > map_extent[0])
                              & (zd_lon < map_extent[1])
                              & (zd_lat > map_extent[2])
                              & (zd_lat < map_extent[3]))

            zd_sm_lon = zd_lon[idx_zd[0]]
            zd_sm_lat = zd_lat[idx_zd[0]]
            zd_sm_alt = zd_alt[idx_zd[0]]
            zd_sm_u = zd_u[idx_zd[0]]
            zd_sm_v = zd_v[idx_zd[0]]

    if (data_source == 'CIMISS'):
        # get filename
        if (initTime != None):
            filename = utl.model_filename(initTime, fhour, UTC=True)
        else:
            filename = utl.filename_day_back_model(day_back=day_back,
                                                   fhour=fhour,
                                                   UTC=True)
        try:
            # retrieve data from CMISS server

            gh = CIMISS_IO.cimiss_model_3D_grid(
                data_code=utl.CMISS_data_code(data_source=model,
                                              var_name='GPH'),
                init_time_str='20' + filename[0:8],
                valid_time=fhour,
                levattrs={
                    'long_name': 'pressure_level',
                    'units': 'hPa',
                    '_CoordinateAxisType': '-'
                },
                fcst_levels=levels,
                fcst_ele="GPH",
                units='gpm')
            if gh is None:
                return

            rh = CIMISS_IO.cimiss_model_3D_grid(
                data_code=utl.CMISS_data_code(data_source=model,
                                              var_name='RHU'),
                init_time_str='20' + filename[0:8],
                valid_time=fhour,
                levattrs={
                    'long_name': 'pressure_level',
                    'units': 'hPa',
                    '_CoordinateAxisType': '-'
                },
                fcst_levels=levels,
                fcst_ele="RHU",
                units='%')
            if rh is None:
                return

            u = CIMISS_IO.cimiss_model_3D_grid(
                data_code=utl.CMISS_data_code(data_source=model,
                                              var_name='WIU'),
                init_time_str='20' + filename[0:8],
                valid_time=fhour,
                levattrs={
                    'long_name': 'pressure_level',
                    'units': 'hPa',
                    '_CoordinateAxisType': '-'
                },
                fcst_levels=levels,
                fcst_ele="WIU",
                units='m/s')
            if u is None:
                return

            v = CIMISS_IO.cimiss_model_3D_grid(
                data_code=utl.CMISS_data_code(data_source=model,
                                              var_name='WIV'),
                init_time_str='20' + filename[0:8],
                valid_time=fhour,
                levattrs={
                    'long_name': 'pressure_level',
                    'units': 'hPa',
                    '_CoordinateAxisType': '-'
                },
                fcst_levels=levels,
                fcst_ele="WIV",
                units='m/s')
            if v is None:
                return

            if (model == 'ECMWF'):
                td2m = CIMISS_IO.cimiss_model_by_time(
                    '20' + filename[0:8],
                    valid_time=fhour,
                    data_code=utl.CMISS_data_code(data_source=model,
                                                  var_name='DPT'),
                    levattrs={
                        'long_name': 'height_above_ground',
                        'units': 'm',
                        '_CoordinateAxisType': '-'
                    },
                    fcst_level=0,
                    fcst_ele="DPT",
                    units='K')
                if td2m is None:
                    return

                t2m = CIMISS_IO.cimiss_model_by_time(
                    '20' + filename[0:8],
                    valid_time=fhour,
                    data_code=utl.CMISS_data_code(data_source=model,
                                                  var_name='TEF2'),
                    levattrs={
                        'long_name': 'height_above_ground',
                        'units': 'm',
                        '_CoordinateAxisType': '-'
                    },
                    fcst_level=0,
                    fcst_ele="TEF2",
                    units='K')
                if t2m is None:
                    return

                v10m = CIMISS_IO.cimiss_model_by_time(
                    '20' + filename[0:8],
                    valid_time=fhour,
                    data_code=utl.CMISS_data_code(data_source=model,
                                                  var_name='WIV10'),
                    levattrs={
                        'long_name': 'height_above_ground',
                        'units': 'm',
                        '_CoordinateAxisType': '-'
                    },
                    fcst_level=0,
                    fcst_ele="WIV10",
                    units='m/s')
                if v10m is None:
                    return

                u10m = CIMISS_IO.cimiss_model_by_time(
                    '20' + filename[0:8],
                    valid_time=fhour,
                    data_code=utl.CMISS_data_code(data_source=model,
                                                  var_name='WIU10'),
                    levattrs={
                        'long_name': 'height_above_ground',
                        'units': 'm',
                        '_CoordinateAxisType': '-'
                    },
                    fcst_level=0,
                    fcst_ele="WIU10",
                    units='m/s')
                if u10m is None:
                    return

            if (model == 'GRAPES_GFS'):
                rh2m = CIMISS_IO.cimiss_model_by_time(
                    '20' + filename[0:8],
                    valid_time=fhour,
                    data_code=utl.CMISS_data_code(data_source=model,
                                                  var_name='RHF2'),
                    levattrs={
                        'long_name': 'height_above_ground',
                        'units': 'm',
                        '_CoordinateAxisType': '-'
                    },
                    fcst_level=2,
                    fcst_ele="RHF2",
                    units='%')
                if rh2m is None:
                    return

                v10m = CIMISS_IO.cimiss_model_by_time(
                    '20' + filename[0:8],
                    valid_time=fhour,
                    data_code=utl.CMISS_data_code(data_source=model,
                                                  var_name='WIV10'),
                    levattrs={
                        'long_name': 'height_above_ground',
                        'units': 'm',
                        '_CoordinateAxisType': '-'
                    },
                    fcst_level=10,
                    fcst_ele="WIV10",
                    units='m/s')
                if v10m is None:
                    return

                u10m = CIMISS_IO.cimiss_model_by_time(
                    '20' + filename[0:8],
                    valid_time=fhour,
                    data_code=utl.CMISS_data_code(data_source=model,
                                                  var_name='WIU10'),
                    levattrs={
                        'long_name': 'height_above_ground',
                        'units': 'm',
                        '_CoordinateAxisType': '-'
                    },
                    fcst_level=10,
                    fcst_ele="WIU10",
                    units='m/s')
                if u10m is None:
                    return
        except KeyError:
            raise ValueError('Can not find all data needed')

        if (draw_zd == True):
            if (initTime == None):
                initTime1 = CIMISS_IO.cimiss_get_obs_latest_time(
                    data_code="SURF_CHN_MUL_HOR")
                initTime = (datetime.strptime('20' + initTime1, '%Y%m%d%H') -
                            timedelta(days=day_back)).strftime("%Y%m%d%H")[2:]

            validtime = (datetime.strptime('20' + initTime, '%Y%m%d%H') +
                         timedelta(hours=fhour)).strftime("%Y%m%d%H")
            data_code = utl.CMISS_data_code(data_source='OBS',
                                            var_name='PLOT_sfc')
            zd_sta = CIMISS_IO.cimiss_obs_by_time(
                times=validtime + '0000',
                data_code=data_code,
                sta_levels="011,012,013,014",
                elements=
                "Station_Id_C,Station_Id_d,lat,lon,Alti,TEM,WIN_D_Avg_2mi,WIN_S_Avg_2mi,RHU"
            )
            obs_valid = True
            if (zd_sta is None):
                CIMISS_IO.cimiss_get_obs_latest_time(data_code=data_code,
                                                     latestTime=6)
                zd_sta = CIMISS_IO.cimiss_obs_by_time(directory=directory_obs,
                                                      dropna=True,
                                                      cache=False)
                obs_valid = False

            zd_lon = zd_sta['lon'].values
            zd_lat = zd_sta['lat'].values
            zd_alt = zd_sta['Alti'].values
            zd_u, zd_v = mpcalc.wind_components(
                zd_sta['WIN_S_Avg_2mi'].values * units('m/s'),
                zd_sta['WIN_D_Avg_2mi'].values * units.deg)

            idx_zd = np.where((zd_lon > map_extent[0])
                              & (zd_lon < map_extent[1])
                              & (zd_lat > map_extent[2])
                              & (zd_lat < map_extent[3])
                              & (zd_sta['WIN_S_Avg_2mi'].values < 1000))

            zd_sm_lon = zd_lon[idx_zd[0]]
            zd_sm_lat = zd_lat[idx_zd[0]]
            zd_sm_alt = zd_alt[idx_zd[0]]
            zd_sm_u = zd_u[idx_zd[0]]
            zd_sm_v = zd_v[idx_zd[0]]

#maskout area
    delt_xy = rh['lon'].values[1] - rh['lon'].values[0]
    #+ to solve the problem of labels on all the contours
    mask1 = (rh['lon'] > map_extent[0] - delt_xy) & (
        rh['lon'] < map_extent[1] + delt_xy) & (
            rh['lat'] > map_extent[2] - delt_xy) & (rh['lat'] <
                                                    map_extent[3] + delt_xy)
    mask2 = (u10m['lon'] > map_extent[0] - delt_xy) & (
        u10m['lon'] < map_extent[1] + delt_xy) & (
            u10m['lat'] > map_extent[2] - delt_xy) & (u10m['lat'] <
                                                      map_extent[3] + delt_xy)
    #- to solve the problem of labels on all the contours
    rh = rh.where(mask1, drop=True)
    u = u.where(mask1, drop=True)
    v = v.where(mask1, drop=True)
    gh = gh.where(mask1, drop=True)
    u10m = u10m.where(mask2, drop=True)
    v10m = v10m.where(mask2, drop=True)
    #prepare interpolator
    Ex1 = np.squeeze(u['data'].values).flatten()
    Ey1 = np.squeeze(v['data'].values).flatten()
    Ez1 = np.squeeze(rh['data'].values).flatten()
    z = (np.squeeze(gh['data'].values)).flatten()

    coords = np.zeros((np.size(levels), u['lat'].size, u['lon'].size, 3))
    coords[..., 1] = u['lat'].values.reshape((1, u['lat'].size, 1))
    coords[..., 2] = u['lon'].values.reshape((1, 1, u['lon'].size))
    coords = coords.reshape((Ex1.size, 3))
    coords[:, 0] = z

    interpolator_U = LinearNDInterpolator(coords, Ex1, rescale=True)
    interpolator_V = LinearNDInterpolator(coords, Ey1, rescale=True)
    interpolator_RH = LinearNDInterpolator(coords, Ez1, rescale=True)

    #process sta_fcs 10m wind
    coords2 = np.zeros((np.size(sta_fcs['lon']), 3))
    coords2[:, 0] = sta_fcs['altitude']
    coords2[:, 1] = sta_fcs['lat']
    coords2[:, 2] = sta_fcs['lon']
    u_sta = interpolator_U(coords2)
    v_sta = interpolator_V(coords2)
    RH_sta = interpolator_RH(coords2)
    wsp_sta = (u_sta**2 + v_sta**2)**0.5
    u10m_2D = u10m.interp(lon=('points', sta_fcs['lon']),
                          lat=('points', sta_fcs['lat']))
    v10m_2D = v10m.interp(lon=('points', sta_fcs['lon']),
                          lat=('points', sta_fcs['lat']))
    if (model == 'GRAPES_GFS' and data_source == 'CIMISS'):
        rh2m_2D = rh2m.interp(lon=('points', sta_fcs['lon']),
                              lat=('points', sta_fcs['lat']))['data'].values
    else:
        td2m_2D = td2m.interp(lon=('points', sta_fcs['lon']),
                              lat=('points', sta_fcs['lat']))
        t2m_2D = t2m.interp(lon=('points', sta_fcs['lon']),
                            lat=('points', sta_fcs['lat']))
        if (data_source == 'MICAPS'):
            rh2m_2D = mpcalc.relative_humidity_from_dewpoint(
                t2m_2D['data'].values * units('degC'),
                td2m_2D['data'].values * units('degC')) * 100
        else:
            rh2m_2D = mpcalc.relative_humidity_from_dewpoint(
                t2m_2D['data'].values * units('kelvin'),
                td2m_2D['data'].values * units('kelvin')) * 100

    wsp10m_2D = (u10m_2D['data'].values**2 + v10m_2D['data'].values**2)**0.5
    winddir10m = mpcalc.wind_direction(u10m_2D['data'].values * units('m/s'),
                                       v10m_2D['data'].values * units('m/s'))
    if (np.isnan(wsp_sta).any()):
        if (wsp_sta.size == 1):
            wsp_sta[np.isnan(wsp_sta)] = np.squeeze(
                wsp10m_2D[np.isnan(wsp_sta)])
            RH_sta[np.isnan(RH_sta)] = np.squeeze(
                np.array(rh2m_2D)[np.isnan(RH_sta)])
        else:
            wsp_sta[np.isnan(wsp_sta)] = np.squeeze(wsp10m_2D)[np.isnan(
                wsp_sta)]
            RH_sta[np.isnan(RH_sta)] = np.squeeze(
                np.array(rh2m_2D))[np.isnan(RH_sta)]
    u_sta, v_sta = mpcalc.wind_components(wsp_sta * units('m/s'), winddir10m)

    #process zd_sta 10m wind
    zd_fcst_obs = None
    if (draw_zd is True):
        coords3 = np.zeros((np.size(zd_sm_alt), 3))
        coords3[:, 0] = zd_sm_alt
        coords3[:, 1] = zd_sm_lat
        coords3[:, 2] = zd_sm_lon
        u_sm_sta = interpolator_U(coords3)
        v_sm_sta = interpolator_V(coords3)
        wsp_sm_sta = (u_sm_sta**2 + v_sm_sta**2)**0.5
        u10m_sm = u10m.interp(lon=('points', zd_sm_lon),
                              lat=('points', zd_sm_lat))
        v10m_sm = v10m.interp(lon=('points', zd_sm_lon),
                              lat=('points', zd_sm_lat))
        wsp10m_sta = np.squeeze(
            (u10m_sm['data'].values**2 + v10m_sm['data'].values**2)**0.5)
        winddir10m_sm = mpcalc.wind_direction(
            u10m_sm['data'].values * units('m/s'),
            v10m_sm['data'].values * units('m/s'))
        if (np.isnan(wsp_sm_sta).any()):
            wsp_sm_sta[np.isnan(wsp_sm_sta)] = wsp10m_sta[np.isnan(wsp_sm_sta)]
        u_sm_sta, v_sm_sta = mpcalc.wind_components(wsp_sm_sta * units('m/s'),
                                                    winddir10m_sm)

        zd_fcst_obs = {
            'lon': zd_sm_lon,
            'lat': zd_sm_lat,
            'altitude': zd_sm_alt,
            'U': np.squeeze(np.array(u_sm_sta)),
            'V': np.squeeze(np.array(v_sm_sta)),
            'obs_valid': obs_valid,
            'U_obs': np.squeeze(np.array(zd_sm_u)),
            'V_obs': np.squeeze(np.array(zd_sm_v))
        }
#prepare for graphics
    sta_fcs_fcst = {
        'lon': sta_fcs['lon'],
        'lat': sta_fcs['lat'],
        'altitude': sta_fcs['altitude'],
        'name': sta_fcs['name'],
        'RH': np.array(RH_sta),
        'U': np.squeeze(np.array(u_sta)),
        'V': np.squeeze(np.array(v_sta))
    }

    fcst_info = gh.coords

    local_scale_graphics.draw_wind_rh_according_to_4D_data(
        sta_fcs_fcst=sta_fcs_fcst,
        zd_fcst_obs=zd_fcst_obs,
        fcst_info=fcst_info,
        map_extent=map_extent,
        draw_zd=draw_zd,
        bkgd_type=bkgd_type,
        bkgd_level=bkgd_level,
        output_dir=None)
Exemplo n.º 2
0
def wind_temp_rn_according_to_4D_data(
        initTime=None,
        fhour=6,
        day_back=0,
        model='ECMWF',
        sta_fcs={
            'lon': [101.82, 101.32, 101.84, 102.23, 102.2681],
            'lat': [28.35, 27.91, 28.32, 27.82, 27.8492],
            'altitude': [3600, 3034.62, 3240, 1669, 1941.5],
            'name': ['健美乡', '项脚乡', '\n锦屏镇', '\n马道镇', 'S9005  ']
        },
        draw_zd=True,
        levels=[
            1000, 950, 925, 900, 850, 800, 700, 600, 500, 400, 300, 250, 200,
            150
        ],
        map_ratio=19 / 9,
        zoom_ratio=1,
        south_China_sea=False,
        area=None,
        city=False,
        output_dir=None,
        bkgd_type='satellite',
        data_source='MICAPS',
        **kwargs):

    # micaps data directory
    if (area != None):
        south_China_sea = False

    # prepare data
    if (area != None):
        cntr_pnt, zoom_ratio = utl.get_map_area(area_name=area)

    cntr_pnt = np.append(np.mean(sta_fcs['lon']), np.mean(sta_fcs['lat']))
    map_extent = [0, 0, 0, 0]
    map_extent[0] = cntr_pnt[0] - zoom_ratio * 1 * map_ratio
    map_extent[1] = cntr_pnt[0] + zoom_ratio * 1 * map_ratio
    map_extent[2] = cntr_pnt[1] - zoom_ratio * 1
    map_extent[3] = cntr_pnt[1] + zoom_ratio * 1

    bkgd_level = utl.cal_background_zoom_ratio(zoom_ratio)
    # micaps data directory
    if (data_source == 'MICAPS'):
        try:
            data_dir = [
                utl.Cassandra_dir(data_type='high',
                                  data_source=model,
                                  var_name='HGT',
                                  lvl=''),
                utl.Cassandra_dir(data_type='high',
                                  data_source=model,
                                  var_name='TMP',
                                  lvl=''),
                utl.Cassandra_dir(data_type='high',
                                  data_source=model,
                                  var_name='UGRD',
                                  lvl=''),
                utl.Cassandra_dir(data_type='high',
                                  data_source=model,
                                  var_name='VGRD',
                                  lvl=''),
                utl.Cassandra_dir(data_type='surface',
                                  data_source=model,
                                  var_name='u10m'),
                utl.Cassandra_dir(data_type='surface',
                                  data_source=model,
                                  var_name='v10m'),
                utl.Cassandra_dir(data_type='surface',
                                  data_source=model,
                                  var_name='Td2m'),
                utl.Cassandra_dir(data_type='surface',
                                  data_source=model,
                                  var_name='T2m')
            ]
        except KeyError:
            raise ValueError('Can not find all directories needed')

        # get filename
        if (initTime != None):
            filename = utl.model_filename(initTime, fhour)
        else:
            filename = utl.filename_day_back_model(day_back=day_back,
                                                   fhour=fhour)
            initTime = filename[0:8]

        # retrieve data from micaps server
        gh = MICAPS_IO.get_model_3D_grid(directory=data_dir[0][0:-1],
                                         filename=filename,
                                         levels=levels)
        if (gh is None):
            return
        gh['data'].values = gh['data'].values * 10

        TMP = MICAPS_IO.get_model_3D_grid(directory=data_dir[1][0:-1],
                                          filename=filename,
                                          levels=levels,
                                          allExists=False)
        if TMP is None:
            return

        u = MICAPS_IO.get_model_3D_grid(directory=data_dir[2][0:-1],
                                        filename=filename,
                                        levels=levels,
                                        allExists=False)
        if u is None:
            return

        v = MICAPS_IO.get_model_3D_grid(directory=data_dir[3][0:-1],
                                        filename=filename,
                                        levels=levels,
                                        allExists=False)
        if v is None:
            return

        u10m = MICAPS_IO.get_model_grid(directory=data_dir[4],
                                        filename=filename)
        if u10m is None:
            return

        v10m = MICAPS_IO.get_model_grid(directory=data_dir[5],
                                        filename=filename)
        if v10m is None:
            return

        td2m = MICAPS_IO.get_model_grid(directory=data_dir[6],
                                        filename=filename)
        if td2m is None:
            return

        t2m = MICAPS_IO.get_model_grid(directory=data_dir[7],
                                       filename=filename)
        if t2m is None:
            return

        if (draw_zd == True):
            validtime = (datetime.strptime('20' + initTime, '%Y%m%d%H') +
                         timedelta(hours=fhour)).strftime("%Y%m%d%H")
            directory_obs = utl.Cassandra_dir(data_type='surface',
                                              data_source='OBS',
                                              var_name='PLOT_ALL')
            try:
                zd_sta = MICAPS_IO.get_station_data(filename=validtime +
                                                    '0000.000',
                                                    directory=directory_obs,
                                                    dropna=True,
                                                    cache=False)
                obs_valid = True
            except:
                zd_sta = MICAPS_IO.get_station_data(directory=directory_obs,
                                                    dropna=True,
                                                    cache=False)
                obs_valid = False

            zd_lon = zd_sta['lon'].values
            zd_lat = zd_sta['lat'].values
            zd_alt = zd_sta['Alt'].values
            zd_u, zd_v = mpcalc.wind_components(
                zd_sta['Wind_speed_2m_avg'].values * units('m/s'),
                zd_sta['Wind_angle_2m_avg'].values * units.deg)

            idx_zd = np.where((zd_lon > map_extent[0])
                              & (zd_lon < map_extent[1])
                              & (zd_lat > map_extent[2])
                              & (zd_lat < map_extent[3]))

            zd_sm_lon = zd_lon[idx_zd[0]]
            zd_sm_lat = zd_lat[idx_zd[0]]
            zd_sm_alt = zd_alt[idx_zd[0]]
            zd_sm_u = zd_u[idx_zd[0]]
            zd_sm_v = zd_v[idx_zd[0]]

#maskout area
    delt_xy = TMP['lon'].values[1] - TMP['lon'].values[0]
    #+ to solve the problem of labels on all the contours
    mask1 = (TMP['lon'] > map_extent[0] - delt_xy) & (
        TMP['lon'] < map_extent[1] + delt_xy) & (
            TMP['lat'] > map_extent[2] - delt_xy) & (TMP['lat'] <
                                                     map_extent[3] + delt_xy)
    mask2 = (u10m['lon'] > map_extent[0] - delt_xy) & (
        u10m['lon'] < map_extent[1] + delt_xy) & (
            u10m['lat'] > map_extent[2] - delt_xy) & (u10m['lat'] <
                                                      map_extent[3] + delt_xy)
    #- to solve the problem of labels on all the contours
    TMP = TMP.where(mask1, drop=True)
    u = u.where(mask1, drop=True)
    v = v.where(mask1, drop=True)
    gh = gh.where(mask1, drop=True)
    u10m = u10m.where(mask2, drop=True)
    v10m = v10m.where(mask2, drop=True)
    #prepare interpolator
    Ex1 = np.squeeze(u['data'].values).flatten()
    Ey1 = np.squeeze(v['data'].values).flatten()
    Ez1 = np.squeeze(TMP['data'].values).flatten()
    z = (np.squeeze(gh['data'].values)).flatten()

    coords = np.zeros((np.size(levels), u['lat'].size, u['lon'].size, 3))
    coords[..., 1] = u['lat'].values.reshape((1, u['lat'].size, 1))
    coords[..., 2] = u['lon'].values.reshape((1, 1, u['lon'].size))
    coords = coords.reshape((Ex1.size, 3))
    coords[:, 0] = z

    interpolator_U = LinearNDInterpolator(coords, Ex1, rescale=True)
    interpolator_V = LinearNDInterpolator(coords, Ey1, rescale=True)
    interpolator_TMP = LinearNDInterpolator(coords, Ez1, rescale=True)

    #process sta_fcs 10m wind
    coords2 = np.zeros((np.size(sta_fcs['lon']), 3))
    coords2[:, 0] = sta_fcs['altitude']
    coords2[:, 1] = sta_fcs['lat']
    coords2[:, 2] = sta_fcs['lon']
    u_sta = interpolator_U(coords2)
    v_sta = interpolator_V(coords2)
    TMP_sta = interpolator_TMP(coords2)
    wsp_sta = (u_sta**2 + v_sta**2)**0.5
    u10m_2D = u10m.interp(lon=('points', sta_fcs['lon']),
                          lat=('points', sta_fcs['lat']))
    v10m_2D = v10m.interp(lon=('points', sta_fcs['lon']),
                          lat=('points', sta_fcs['lat']))
    td2m_2D = td2m.interp(lon=('points', sta_fcs['lon']),
                          lat=('points', sta_fcs['lat']))
    t2m_2D = t2m.interp(lon=('points', sta_fcs['lon']),
                        lat=('points', sta_fcs['lat']))

    wsp10m_2D = (u10m_2D['data'].values**2 + v10m_2D['data'].values**2)**0.5
    winddir10m = mpcalc.wind_direction(u10m_2D['data'].values * units('m/s'),
                                       v10m_2D['data'].values * units('m/s'))
    if (np.isnan(wsp_sta).any()):
        if (wsp_sta.size == 1):
            wsp_sta[np.isnan(wsp_sta)] = np.squeeze(
                wsp10m_2D[np.isnan(wsp_sta)])
            TMP_sta[np.isnan(TMP_sta)] = np.squeeze(
                np.array(t2m_2D)[np.isnan(TMP_sta)])
        else:
            wsp_sta[np.isnan(wsp_sta)] = np.squeeze(wsp10m_2D)[np.isnan(
                wsp_sta)]
            TMP_sta[np.isnan(TMP_sta)] = np.squeeze(
                np.array(t2m_2D))[np.isnan(TMP_sta)]
    u_sta, v_sta = mpcalc.wind_components(wsp_sta * units('m/s'), winddir10m)

    #process zd_sta 10m wind
    zd_fcst_obs = None
    if (draw_zd is True):
        coords3 = np.zeros((np.size(zd_sm_alt), 3))
        coords3[:, 0] = zd_sm_alt
        coords3[:, 1] = zd_sm_lat
        coords3[:, 2] = zd_sm_lon
        u_sm_sta = interpolator_U(coords3)
        v_sm_sta = interpolator_V(coords3)
        wsp_sm_sta = (u_sm_sta**2 + v_sm_sta**2)**0.5
        u10m_sm = u10m.interp(lon=('points', zd_sm_lon),
                              lat=('points', zd_sm_lat))
        v10m_sm = v10m.interp(lon=('points', zd_sm_lon),
                              lat=('points', zd_sm_lat))
        wsp10m_sta = np.squeeze(
            (u10m_sm['data'].values**2 + v10m_sm['data'].values**2)**0.5)
        winddir10m_sm = mpcalc.wind_direction(
            u10m_sm['data'].values * units('m/s'),
            v10m_sm['data'].values * units('m/s'))
        if (np.isnan(wsp_sm_sta).any()):
            wsp_sm_sta[np.isnan(wsp_sm_sta)] = wsp10m_sta[np.isnan(wsp_sm_sta)]

        for ista in range(0, len(wsp10m_sta)):
            if (wsp10m_sta[ista] > wsp_sm_sta[ista]):
                wsp_sm_sta[ista] = wsp10m_sta[ista]

        u_sm_sta, v_sm_sta = mpcalc.wind_components(wsp_sm_sta * units('m/s'),
                                                    winddir10m_sm)

        zd_fcst_obs = {
            'lon': zd_sm_lon,
            'lat': zd_sm_lat,
            'altitude': zd_sm_alt,
            'U': np.squeeze(np.array(u_sm_sta)),
            'V': np.squeeze(np.array(v_sm_sta)),
            'obs_valid': obs_valid,
            'U_obs': np.squeeze(np.array(zd_sm_u)),
            'V_obs': np.squeeze(np.array(zd_sm_v))
        }
#prepare for graphics
    sta_fcs_fcst = {
        'lon': sta_fcs['lon'],
        'lat': sta_fcs['lat'],
        'altitude': sta_fcs['altitude'],
        'name': sta_fcs['name'],
        'TMP': np.array(TMP_sta),
        'U': np.squeeze(np.array(u_sta)),
        'V': np.squeeze(np.array(v_sta))
    }

    fcst_info = gh.coords

    local_scale_graphics.draw_wind_temp_according_to_4D_data(
        sta_fcs_fcst=sta_fcs_fcst,
        zd_fcst_obs=zd_fcst_obs,
        fcst_info=fcst_info,
        map_extent=map_extent,
        draw_zd=draw_zd,
        bkgd_type=bkgd_type,
        bkgd_level=bkgd_level,
        output_dir=output_dir)