Exemplo n.º 1
0
def nspinspec_dense(freqs, couplings, normalize=True):
    """
    Calculates second-order spectral data (freqency and intensity of signals)
    for *n* spin-half nuclei.

    Parameters
    ---------
    freqs : [float...]
        a list of *n* nuclei frequencies in Hz
    couplings : array-like
        an *n, n* array of couplings in Hz. The order
        of nuclei in the list corresponds to the column and row order in the
        matrix, e.g. couplings[0][1] and [1]0] are the J coupling between
        the nuclei of freqs[0] and freqs[1].
    normalize: bool
        True if the intensities should be normalized so that total intensity
        equals the total number of nuclei.

    Returns
    -------
    spectrum : [[float, float]...] numpy 2D array
         of [frequency, intensity] pairs.
    """
    nspins = len(freqs)
    H = hamiltonian_dense(freqs, couplings)
    E, V = np.linalg.eigh(H)
    V = V.real
    T = transition_matrix_dense(nspins)
    I = np.square(V.T.dot(T.dot(V)))
    spectrum = new_compile_spectrum(I, E)
    if normalize:
        spectrum = normalize_spectrum(spectrum, nspins)
    return spectrum
Exemplo n.º 2
0
def nspinspec_sparse(freqs, couplings, normalize=True):
    """
    Calculates second-order spectral data (freqency and intensity of signals)
    for *n* spin-half nuclei.

    Parameters
    ---------
    freqs : [float...]
        a list of *n* nuclei frequencies in Hz
    couplings : array-like
        an *n, n* array of couplings in Hz. The order
        of nuclei in the list corresponds to the column and row order in the
        matrix, e.g. couplings[0][1] and [1]0] are the J coupling between
        the nuclei of freqs[0] and freqs[1].
    normalize: bool
        True if the intensities should be normalized so that total intensity
        equals the total number of nuclei.

    Returns
    -------
    spectrum : [[float, float]...] numpy 2D array
        of [frequency, intensity] pairs.
    """
    nspins = len(freqs)
    H = hamiltonian_sparse(freqs, couplings)
    spectrum = vectorized_simsignals(H.todense(), nspins)
    if normalize:
        spectrum = normalize_spectrum(spectrum, nspins)
    return spectrum
Exemplo n.º 3
0
def test_ABX3():
    from .windnmr_defaults import ABX3dict
    refspec = ([(124.2804555427071, 0.04365107831800394),
                (131.2804555427071, 0.13095323495401182),
                (136.2804555427071, 0.20634892168199606),
                (138.2804555427071, 0.13095323495401182),
                (142.7195444572929, 0.20634892168199606),
                (143.2804555427071, 0.6190467650459882),
                (145.2804555427071, 0.04365107831800394),
                (149.7195444572929, 0.6190467650459882),
                (150.2804555427071, 0.6190467650459882),
                (154.7195444572929, 0.04365107831800394),
                (156.7195444572929, 0.6190467650459882),
                (157.2804555427071, 0.20634892168199606),
                (161.7195444572929, 0.13095323495401182),
                (163.7195444572929, 0.20634892168199606),
                (168.7195444572929, 0.13095323495401182),
                (175.7195444572929, 0.04365107831800394)])

    testspec = sorted(ABX3(**ABX3dict, normalize=True))
    # refspec appropriate if normalize=False, but want to cover all code, so
    sum_intensities = sum([y for x, y in refspec])
    print('target total intensity is: ', sum_intensities)  # 4
    testspec = normalize_spectrum(testspec, sum_intensities)
    np.testing.assert_array_almost_equal(testspec, refspec, decimal=2)
Exemplo n.º 4
0
def ABX3(Jab, Jax, Jbx, Vab, Vcentr, normalize=True):
    """
    Simulation of the AB part of an ABX3 spin system.

    TODO: explain simplification

    Parameters
    ---------
    Jab : float
        the Ha-Hb coupling constant (Hz).
    Jax : float
        the Ha-Hb coupling constant (Hz).
    Jbx : float
        the Ha-Hb coupling constant (Hz).
    Vab : float
        the difference in the frequencies (Hz) of Ha and Hb in the absence of
        coupling.
    Vcentr : float
        the frequency (Hz) for the center of the AB2 signal.
    normalize: bool
        whether the signal intensity should be normalized.

    Returns
    -------
    [(float, float)...]
        a list of (frequency, intensity) tuples.
    """
    # Refactoring of Reich's code for simulating the ABX3 system.
    va = Vcentr - Vab / 2
    vb = Vcentr + Vab / 2
    a_quartet = first_order((va, 1), [(Jax, 3)])
    b_quartet = first_order((vb, 1), [(Jbx, 3)])
    res = []
    for i in range(4):
        dv = b_quartet[i][0] - a_quartet[i][0]
        abcenter = (b_quartet[i][0] + a_quartet[i][0]) / 2
        sub_abq = AB(Jab, dv, abcenter, normalize)  # Wa, RightHz, WdthHz not
        # implemented
        scale_factor = a_quartet[i][1]
        scaled_sub_abq = [(v, i * scale_factor) for v, i in sub_abq]
        res.extend(scaled_sub_abq)
    if normalize:
        normalize_spectrum(res, 5)  # TODO: check this factor
    return res
Exemplo n.º 5
0
def test_AAXX():
    from .windnmr_defaults import AAXXdict
    refspec = sorted([(173.0, 2), (127.0, 2),
                      (169.6828402774396, 0.4272530047525843),
                      (164.6828402774396, 0.5727469952474157),
                      (135.3171597225604, 0.5727469952474157),
                      (130.3171597225604, 0.4272530047525843),
                      (183.6009478460092, 0.20380477476124093),
                      (158.6009478460092, 0.7961952252387591),
                      (141.3990521539908, 0.7961952252387591),
                      (116.39905215399081, 0.20380477476124093)])
    testspec = sorted(AAXX(**AAXXdict, normalize=True))
    # refspec appropriate if normalize=False, but want to cover all code, so
    sum_intensities = sum([y for x, y in refspec])
    print('target total intensity is: ', sum_intensities)  # 8
    testspec = normalize_spectrum(testspec, sum_intensities)
    np.testing.assert_array_almost_equal(testspec, refspec, decimal=2)
Exemplo n.º 6
0
def test_AB():
    from .windnmr_defaults import ABdict
    refspec = [(134.39531364385073, 0.3753049524455757),
               (146.39531364385073, 1.6246950475544244),
               (153.60468635614927, 1.6246950475544244),
               (165.60468635614927, 0.3753049524455757)]

    refspec_normalized = normalize_spectrum(refspec, 2)
    print('ref normalized:')
    print(refspec_normalized)
    print(sum([y for x, y in refspec_normalized]))
    print(sum(refspec_normalized[1]))
    testspec = AB(**ABdict)
    print('testspec:')
    print(testspec)
    print(sum([y for x, y in testspec]))
    np.testing.assert_array_almost_equal(testspec,
                                         refspec_normalized,
                                         decimal=2)
Exemplo n.º 7
0
def test_AB2():
    from .windnmr_defaults import dcp
    refspec = [(-8.892448165479056, 0.5434685012269458),
               (-2.300397938882746, 0.7780710767178313), (0.0, 1),
               (6.59205022659631, 1.6798068052995172),
               (22.865501607924635, 2.6784604220552235),
               (23.542448165479055, 2.4565314987730544),
               (30.134498392075365, 1.5421221179826525),
               (31.75794977340369, 1.3201931947004837),
               (55.300397938882746, 0.001346383244293953)]
    refspec = normalize_spectrum(refspec, 3)
    print('ref normalized;')
    print(refspec)
    print(sum([y for x, y in refspec]))
    testspec = sorted(AB2(**dcp))
    # testspec.sort()
    print('testspec:')
    print(testspec)
    print(sum([y for x, y in testspec]))
    np.testing.assert_array_almost_equal(sorted(testspec), refspec, decimal=2)
Exemplo n.º 8
0
def test_ABX():
    from .windnmr_defaults import ABXdict
    refspec = sorted([(-9.48528137423857, 0.2928932188134524),
                      (-6.816653826391969, 0.44529980377477096),
                      (2.5147186257614305, 1.7071067811865475),
                      (5.183346173608031, 1.554700196225229),
                      (7.4852813742385695, 1.7071067811865475),
                      (14.816653826391969, 1.554700196225229),
                      (19.485281374238568, 0.2928932188134524),
                      (26.81665382639197, 0.44529980377477096), (95.0, 1),
                      (102.3313724521534, 0.9902903378454601),
                      (97.6686275478466, 0.9902903378454601), (105.0, 1),
                      (80.69806479936946, 0.009709662154539944),
                      (119.30193520063054, 0.009709662154539944)])
    refspec = normalize_spectrum(refspec, 3)
    print('ref normalized;')
    print(refspec)
    print(sum([y for x, y in refspec]))
    testspec = sorted(ABX(**ABXdict))
    print('testspec:')
    print(testspec)
    print(sum([y for x, y in testspec]))
    np.testing.assert_array_almost_equal(testspec, refspec, decimal=2)
Exemplo n.º 9
0
def test_normalize_spectrum():
    unnormalized = [(1200.0, 1.0), (500.0, 2.0)]
    expected = [(1200.0, 2.0), (500.0, 4.0)]
    result = normalize_spectrum(unnormalized, n=6)
    assert np.allclose(result, expected)
Exemplo n.º 10
0
def test_convert_refspec():
    refspec = [(1, 1), (2, 3), (3, 3), (4, 1)]
    new_refspec = normalize_spectrum(refspec, 2)
    print(sum([y for x, y in new_refspec]))
    assert new_refspec == [(1, 0.25), (2, 0.75), (3, 0.75), (4, 0.25)]