def main(): parser = argparse.ArgumentParser() parser.add_argument( "--tolabel", help="Preprocess images to create labels (out/tolabel)", action="store_true", default=False) parser.add_argument("--augmentation", help="Dataset augmentation (pass quantity)", type=int) parser.add_argument("--dataset", help="Dataset name", type=str, default=constant.DATASET) parser.add_argument("--train", help="Train", action="store_true", default=False) parser.add_argument("--test", help="Predict", action="store_true", default=False) parser.add_argument("--arch", help="Neural Network architecture", type=str, default=constant.MODEL) parser.add_argument("--dip", help="Method for image processing", type=str, default=constant.IMG_PROCESSING) parser.add_argument("--gpu", help="Enable GPU mode", action="store_true", default=False) args = parser.parse_args() environment.setup(args) exist = lambda x: len(x) > 0 and path.exist(path.data(x, mkdir=False)) if (args.tolabel): generator.tolabel() elif args.dataset is not None and exist(args.dataset): if (args.augmentation): generator.augmentation(args.augmentation) elif (args.train): nn.train() elif (args.test): nn.test() else: print("\n>> Dataset not found\n")
def main(): dataset = "crackconcrete" train = True test = False environment.setup() exist = lambda x: len(x) > 0 and path.exist(path.data(x, mkdir=False)) if dataset is not None and exist(dataset): if train: nn.train() elif test: nn.test() else: print("\n>> Dataset not found\n")
#!/usr/bin/env/python # coding: utf-8 from nn import nn from random import seed seed(1) dataset = [[2.7810836, 2.550537003, 0], [1.465489372, 2.362125076, 0], [3.396561688, 4.400293529, 0], [1.38807019, 1.850220317, 0], [3.06407232, 3.005305973, 0], [7.627531214, 2.759262235, 1], [5.332441248, 2.088626775, 1], [6.922596716, 1.77106367, 1], [8.675418651, -0.242068655, 1], [7.673756466, 3.508563011, 1]] n_inputs = len(dataset[0]) - 1 n_outputs = len(set([row[-1] for row in dataset])) nn = nn.NN(n_inputs, 2, n_outputs) nn.train(dataset, 0.5, 20) network = nn.get_network() for layer in network: print('{}\n'.format(layer))